Bootstrapping the Learning Process for
the Semi-automated Design of a Challenging Game Al

Charles Madeiral, Vincent Corrublel, Geber Ramalhoz, Bohdana Ratitch®

'Laboratoire d’Informatique de Paris 6
Université Pierre et Marie Curie (Paris 6)
4 Place Jussieu
75252 Paris Cedex 05 FRANCE
{Charles.Madeira,Vincent.Corruble} @lip6.fr

Abstract

This paper proposes a methodology for the semi-automated
design of a game Al for simulation and strategy games
which require the player to control a potentially high
number of characters or units in complex environments.
After defending the idea of using Machine Learning, and
especially Reinforcement Learning, as a basic technique,
some of the key issues, mostly dealing with complexity,
representation, and coordination, are outlined, and some
ways forward are proposed. These revolve mainly around
the idea of problem decomposition using the game structure,
and of bootstrapping the learning process by letting the
learning game Al play against another Al, and only
progressively take more and more control of the decision-
making. The ongoing application of this methodology to the
design of a new game Al for an existing wargame system is
described in some detail.

Introduction

This paper addresses the issue of the design of a game Al
for a category of games which range from real-time action-
oriented strategy games, such as Age of Empires
(Microsoft), to intricate historical simulations and
wargames, such as Sid Meier’s Gettysburg (Firaxis) or
John Tiller’s Battleground series (Talonsoft).

In this paper we focus on a new approach to the semi-
automatic generation of a game Al using Machine Learning
techniques. We advocate a specific methodology that one
can follow to circumvent typical difficulties arising in the
context of large scale complex strategic games. We take as
an ongoing case study the use of Reinforcement Learning
techniques to develop an Al for a particular historical
wargame, but we believe that the lessons learned have a
wide applicability to most uses of Machine Learning for Al
design applied to games where a large number of units or
characters have to coordinate between themselves to
achieve a long-term common goal.

In the following, we introduce the notion of a Learning
Al, describe the type of learning technique we used,

Copyright © 2004, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

2Centro de Informatica
Universidade Federal do Pernambuco
Caixa Postal 7851, Cidade Universitaria
50732-970 Recife, PE, BRAZIL

glr@cin.ufpe.br

3School of Computer Science
McGill University
3480 University St., Office 112
Montreal, H3A 2A7 CANADA
bohdana@cs.mcgill.ca

introduce the bootstrap mechanism and the general
methodology of our approach. Then we describe its
application to a wargame, give some initial results and
discuss ongoing work.

Challenges for the design of a game Al, the
Machine Learning option.

The importance of a challenging game Al

It is well-known in the game industry that a challenging Al
is one of the keys to retain a high replay value for a game
(Nareyek 2004). In fact, an important role for a game Al is
to continuously challenge the wuser at his/her level,
provoking him/her to change tactics or strategies. Despite
the recognized importance of Al in games, few detailed
attempts for developing methodologies for the design of a
challenging game Al are found in the literature (Rabin
2002).

Most games, especially for complex simulations that are
the focus of our interest, use some form of rule base as the
basic technique supporting their game AI (Rabin 2002).
Automated reasoning based on rules and inference engines
is one of the oldest and most studied techniques developed
within academic Al. It comes in various forms ranging
from simple scripts (where actions are either time-
triggered, or event-triggered), to proper rule bases (from
the simple reactive ones, to more advanced cognitive ones
which allow for internal states, goals, and planning). The
most often cited benefits of rule-based programming
include its expressivity, flexibility and intuitiveness. The
disadvantages are also well-known. First, as the knowledge
and reasoning that rule bases model become complex, their
programming becomes seriously difficult. This is indeed a
serious limitation if one is interested in their application to
complex simulation games. Second, rule bases were
developed originally for expert systems, for which the same
situation should usually lead to the same reasoning and
conclusion. This is typically untrue in games, where from
the strategic point of view, any fixed reasoning is easily

caught by the opponent and its loopholes (there are always
some) can soon be exploited (Corruble 2000).

For these reasons, it is perfectly legitimate to consider
other alternatives to address the design of a game Al In the
following, we consider those proposed by Machine
Learning, which are characterized, when compared to rule
bases, by a high adaptability, and less reliance on prior
knowledge.

Machine learning as a worthy alternative

Almost as old as the field of automated reasoning, the field
of Machine Learning is important in academic Al and has
contributed a significant number of techniques,
methodologies, and algorithms (Mitchell 1997). One of its
key concepts is that knowledge can be the output of an
automated learning process that takes experience (data) as
an input. The kind of data that can be used as input and the
form of knowledge produced during the learning process
depend mostly on the learning algorithm chosen, which
itself is constrained by the learning task. However, there
are some generic questions to tackle when using machine
learning for the design of a game Al.

The main issue is that there is no learning without
experience. Experience can be gathered in all the situations
which constitute learning opportunities. Simulation games
are a dream application domain for learning techniques as
generating data could not be easier: one just has to play.
However, to generate worthy data for learning, one needs a
worthy opponent. Moreover, the first option which would
be to have our game Al play against a (good) human player
is not really viable for complex games as it would require
the human player to play thousands (potentially hundreds
of thousands) of games against a game Al that would
initially be a terrible player.

In this paper we introduce an approach and a
methodology that we are now experimenting with on a
wargame system in order to address this data acquisition
problem. We use some form of learning to design a game
Al semi-automatically. But to initiate this learning, we let
our system play against another game Al already designed
for this game, effectively producing some form of a
bootstrap mechanism.

Using Reinforcement Learning to design a game Al

Reinforcement Learning (RL) is a general approach for
learning from interaction with a stochastic, unknown
environment (Sutton and Barto 1998). The field has
contributed both efficient algorithms and solid theoretical
results about their performances. The RL approach is
particularly suited in the case of strategic games, as it is
specifically designed for learning sequential decision-
making strategies based on long-term performance criteria.

Markov Decision Processes (MDPs) present one natural
way to formulate sequential decision-making tasks. An
MDP is defined as a 4-tuple (S,4,P,R), in which S is a finite
set of states (the situation of the game at a given time), 4 is
a finite set of actions (what actions or orders the player can

choose from), P is a state transition probability function,
and R is a reward function. Dynamics of the environment is
defined by the transition probability function P: S x 4 x S
— [0, 1], where P denotes the probability that action a,
when executed in state s, transfers the system to state s’. In
general, for games, P is determined by the game rules. In
fact, RL can be applied even without explicitly knowing P,
since it can potentially be used for learning a good strategy
directly or by first inferring P from experience. The reward
function is defined as a real-valued bounded function R: § x
Ax§— R, where R is the reward of taking action a in
state s and observing s’ at the next state.

Before going further, it is important to determine which
decision-making process we wish to model. Is it the one of
a human player controlling a potentially high number of
game units (or characters) simultaneously? Is it the
decision-making of one of these units taken individually (in
which case many such independent processes would have
to be modeled concurrently)? Actually, these two options
are potentially interesting, yet they both present difficulties.
The first allows for some explicit coordination, but soon
hits a complexity wall from the point of view of
Reinforcement Learning, as the number of potential actions
considered by the human player grows exponentially with
the number of controlled units. The second, decentralized
option, lets each unit learn a strategy independently of
other units. This is usually suboptimal since, in most
situations, some form of coordination to reach a common
goal is either necessary or at least helpful.

Standard tabular RL does not scale well to large state
and action spaces (Sutton and Barto 1998). As a
consequence of the complexity involved in strategy games,
RL cannot obtain satisfactory results in a reasonable time
based on representations which are very detailed. Since the
number of low-level actions available to each character or
unit is huge, one can naturally understand that any
reasoning at a tactic or strategic level needs to be tackled at
a higher, more abstract level. Therefore, a good Al should
have various representation granularities, each one adapted
to the task at hand (Corruble, Madeira and Ramalho 2002)
(Zucker, Bredéche and Saitta 2002). In the next section, we
present a way of decreasing the complexity of the
representation through hierarchical problem decomposition
and information abstraction at each level of the hierarchy.

Methodology for Al automated design via
learning

As previously discussed, when a problem is highly
complex, it is not feasible to solve it directly as a whole. A
basic method to decrease complexity is to decompose the
problem into relatively independent subproblems, which
are easier to solve individually. In this section, we present a
methodology, through which reinforcement learning
techniques can be applied to the semi-automated design of
a game Al. We believe that this methodology has a wide
applicability in the field of strategy and adventure games.

The following section will present the first steps of its
application to a specific wargame system.

Decomposing the problem

The nature of many strategic simulation games makes them
natural candidates for a hierarchical decomposition
approach and multi-agent distributed reasoning. For
instance, within a military hierarchy, a leader is able to give
an order to a subordinate and some time later, receives
some feedback. This structure enables us to decompose the
problem so that the decision-making process of a game Al
is carried out on several levels (see Figure 1).

| Army Commander |

Situation
Order] Report
Corps Commander | e

Order Situation T
Report
Division Commander | e
Order

f T Situation Report T 1 Order

| Brigade Commander | e | Brigade Commander |
Order l Situation Order l Situation
Report Report
| Lower Level Units | e | Lower Level Units |
Actionsi TPerceptions Actions # TPerceptions

Figure 1: Military Hierarchical Scheme of Command and Control
(Multi-agent point of view)

The main advantage of this scheme is that it allows the
“higher levels” of the hierarchy to formulate a strategy,
without being overwhelmed by the intractably large number
of possibilities which the computer Al would have to
consider if it possessed all the information pertaining to
individual low level units. Consequently, a representation
with an appropriate granularity for each level is needed for
strategic reasoning, and can be obtained as an abstraction
of the low level representation. This is in itself a complex
problem. Fortunately, we can use some knowledge about
the domain (for instance, military decision-making), a
detailed analysis of the rules of the game, or indeed simple
common-sense, to guide us toward that goal (Corruble,
Madeira and Ramalho 2002).

Bootstrapping the learning process

Once a representation is designed for each level of the
hierarchy to be controlled by the game Al, we can tackle
the problem of learning a good strategy. As mentioned
earlier, we found that this would require the use of a
bootstrapping mechanism obtained by playing against
another game AI. This mechanism is actually designed
along two dimensions: The first type of bootstrap consists
in letting initially the learning Al play and learn against
another Al (which we call later the bootstrap AI). The
second type of bootstrap is obtained by letting the learning
Al take only a partial control over its camp.

In the first case, the learning Al would take charge of the
entire decision making for its camp, while its opponent,
rather than a human player, is another Al, produced by
other techniques (such as rule bases). This lets our system
play thousands of games to learn progressively (and
slowly) a better strategy.

Since learning to control an entire camp (at all levels of
the military hierarchy) at once remains a very complex task
to tackle (Whiteson and Stone 2003), we use also a second
type of bootstrap, where the existing non-adaptive
bootstrap Al takes partial control of our camp, in addition
to the full control of the enemy camp. This leaves only a
small part of the decision making process to be learnt at
any given time. This is a fundamental point of our
methodology because it allows incremental learning of
strategies with increasingly refined levels of specificity and
detail.

Returning to the example of Figure 1, we could
implement this methodology by learning strategies for the
highest levels of the military hierarchy first and then
progressively descending down. To control our camp, the
learning Al chooses high level orders for the commanders
it is in charge of, after which the bootstrap Al is used to
implement these orders at the lower levels.

Experimental platform

In order to generate valuable experience for our learning
Al, we chose to develop a software platform that would
serve several functions: (1) high-level management of our
experiments, (2) control and parameterization of our
learning Al engine, (3) management of communications
between our learning Al and the “bootstrap AI”. Point (3)
is of particular importance because it lets the experimenter
manage which part of the decision making is carried out by
the learning Al, and which part is left to the bootstrap Al.

MNapolecirondc

Warzame Platform
System Al Engine

Decision Ivlaking

Situation
Representation

ituation? |, Actions

| Chare Engine |

Feoilt § | Fequest

| Interactin Manager

Operating System |

Figure 2: Napolectronic Platform Architecture

Our configurable platform, named Napolectronic, has an
architecture based on three main modules: a game engine,
an Al engine, and an interaction manager with a wargame
application (see Figure 2).

The game engine is in high-level control of the game
evolution. It takes care of data acquisition and turn/phase
control. The Al engine deals with changes of
representation, decision making for each unit or character,
and learning, as well as all the parameters attached. The
interaction manager takes care of managing the interactions
between our learning Al and the existing wargame
(including its Al we use as “bootstrap”).

To conduct our experiments, we chose as specific
wargame John Tiller’s Battleground™ series (Talonsoft).
Battleground is a turn-based simulation of Napoleonic
battles that aim at a good historical accuracy, with detailed
maps, orders of battles, combat resolution, etc. while
retaining gameplay value.

Experiments with Battleground

In this section, we present an application of our
methodology to the design of a game Al for Battleground.

Figure 3 shows a decision-making scheme that we chose
in order to carry out our first experiments. We configured
the wargame existing Al (the bootstrap Al) to control, on
one hand its own camp, and on the other hand, corps
commanders and their subordinate units for our camp. As a
result, our system (the learning Al) controls only the army
commander (the highest level commander) of our camp.
When requested, the learning Al determines which order
the army commander issues to each of his subordinates.

I Army Commander I

Orderl Situation Orderl Situation Orderl Situation
Report Report Report

Corps Corps Corps
Commander Commander Commander
: Controlled : Controlled : Controlled
1 by an 1 by an 1 by an

W existing Al W existing Al W existing Al

Figure 3: Decision-making scheme for our first experiments

At the beginning of each turn, in order to take a decision,
the army commander needs to know the situation of his
corps units and some information about the enemy units.
To this end, he uses an abstracted state representation that
we designed based on a semi-automated terrain analysis of
the game map and on a specific scenario configuration for
this map. As a result, the game map was divided into six
zones based on tactical analysis of terrain features, the
scenario objectives and the initial situation of the armies.

In terms of RL, we initially use a table as memory for the
learning game strategy. This type of memory is simple to
implement, but is enormously costly in terms of memory
space. Consequently, the chosen representation does not
contain much detailed information. The state representation
is composed of two main groups of data: (1) a corps
description (i.e.: its location in one of the 6 zones above),
its strength and fatigue levels, and quality rating, (2) its
environment (the total strength of friendly and enemy units
in each map zone). One interesting feature of our

representation is that two different units can share the same
state if they have the same abstracted description and
environment.

The possible actions for a commander are based on two
attributes: an order type (extreme attack, attack, no order,
defend and extreme defend) and a target location on the
map (hexagon). In order to constraint the action space, we
chose a very small number of key hexagons (usually one)
for each one of the six zones.

The RL algorithm used by our system is SARSA(A) with
replacing eligibility traces and clearing traces for untaken
actions (Sutton and Barto 1998). It is applied to learn state-
action values Q(s,a) by repeated application of an
incremental update rule:

0,.,(s,a) « O.(s,a)+ ad e(s,a), for all s,a

where 5[=r,

+Q(s[) H)—Q(s[,a,) is the temporal difference

error and e, (S, a) is the eligibility trace for the state-action (s,a).

The reward function » is computed by our system as the
change in the game score between the current and next
game turns.

First results

The first results of our experiments indicate that our system
has made good progress for the first ten thousand episodes
(i.e. completed learning games) with an important
improvement in average score (see Figure 4). After the first
ten thousand episodes, our system does not improve its
score anymore.

Evaluation results of the Learning Al
400

5 200 —— .
% 500 !]
§ T AW v /
Ry Y
Py
4 s
-50 L e e e e L A e LA B

1 3 5 7 9 11 18 15 17 19 21 283 25
Number of learning episodes (x 1000)

Figure 4: Progress evaluation of the Learning Al in a total of
25000 episodes (100 evaluations for each 1000 episodes)

In order to compare our learning Al with other kind of
agents (a random and the non-adaptive bootstrap Al), we
evaluated these two agents by playing against the non-
adaptive bootstrap Al for some thousands of games. While
the random agent obtains an average final score of -14
points, our learning agent so far reaches an average score
of 345 points (average of 100 evaluations after 10000
episodes of learning), which places it close to the
performance of the bootstrap Al, estimated at 350 points on
average. These scores are related to the victory values of
the game scenario, and these values range from major
defeat to major victory. The value description and an agent
comparative performance graph are showed in the Figure 5.

Comparison results
‘ @ Random vs Bootstrap Al m Bootstrap Al vs Bootstrap Al O Learning Al vs Bootstrap Al
70
Major Defeat: score <=0
% 60 - Minor Defeat: 0 <score <= 200
X
S Draw : 200 < score < 600
50 4 Minor Victory: 600 <= score < 1000| |
Major Victory: score >= 1000
g. 40
% 301 _l
g 20
10 1 I
o ”
Major Defeat ~ Minor Defeat Draw Minor Victory Major Victory
Victory levels (defined by the game rules)

Figure 5: Histogram of victory levels for 3 types of Al against the
bootstrap Al

We can see that the learning AI has managed to
approach very closely the level of performance of the
bootstrap Al. It is a very significant result to achieve the
performance of an existing rule-based system with a
learning system despite the limitation resulting from our
choice of a very simplified representation of game
situations.

Moreover, we can detect that our system has learned
some basic strategy: early in the learning experiment, its
decisions were completely inconsistent (indeed almost
random), while now, after thousands of episodes, the
learning Al consistently orders its units towards some
strategic map points that bring the friendly units to the
scenario objectives. We can observe too that the friendly
units take much more risk in order to capture the most
important objectives, while in the first ten thousand
episodes they took more precaution. Although they still fail
dramatically at some occasions now, on average they
achieve higher scores. This indicates that long-term
benefits of risky actions have been learned and are
reflected in the adopted strategy.

We have short-term plans of an experimental nature that
are expected to lead further improvements. However,
reaching satisfying performances, and expanding the scope
of learning to larger and larger parts of the decision-making
process will require some more fundamental upgrades to
our approach. Some of them are outlined in the next
section.

Conclusions and Future Works

We proposed a new approach to the semi-automatic
generation of a game Al using Reinforcement Learning
techniques. To deal with the large scale and high
complexity of the underlying game, our approach uses a
bootstrapping of the learning process which allows to
progressively learn a challenging game strategy in stages,
tackling a smaller learning sub-problem at a time. The
decomposition into sub-problems is based on the
underlying hierarchical structure of the game as well as on
some information abstraction appropriately designed for
each level of the control hierarchy.

We are currently applying our bootstrapping
methodology to the battleground series of wargames. In
this paper, we reported the results of our first experiments,
where the goal was to learn a high-level strategy for the
army commander based on a tractable abstracted
representation of the state of the game. The results so far
are quite encouraging, and we are confident that with a
more detailed representation and a capacity for
approximation, further improvement can be achieved in the
quality of the learnt strategies.

In future work, we plan to apply our methodology for
learning strategies of low level commanders. In this case, it
will become crucial to coordinate the decision making
process of various units. This is an interesting challenge,
and an active research topic in the field of Reinforcement
Learning (Guestrin, Lagoudakis and Parr 2002).

Moreover, it is not feasible to control all levels of the
hierarchy based on a tabular representation for the learning
memory (because of the number of states to consider), we
therefore have to tackle further the issue of generalization
of the state representation. This can be done in two
directions: abstracting the state representation based on
domain knowledge (such as military terrain analysis), or via
an automated approximation mechanism. We are currently
exploring these two directions in parallel.

Acknowledgements

Charles Madeira’s PhD work is funded by a scholarship
from CAPES, Brazil within the framework of SMART-E’s,
a collaborative project between UFPE, Brazil, and UPMC,
France, sponsored by CAPES-COFECUB.

References

Corruble, V., Madeira, C., and Ramalho, G. 2002. Steps Toward
Building a Good AI For Complex Wargame-Type Simulation
Games. In Proceedings of The 3rd International Conference on
Intelligent Games and Simulation, London, United Kingdom.
Corruble, V. 2000. Al approaches to developing strategies for
wargame type simulations. AAAI Fall Symposium on Simulating
Human Agents. Cape Cod, USA.

Guestrin, C., Lagoudakis, M., and Parr, R. 2002. Coordinated
Reinforcement Learning, In Proceedings of The Nineteenth
International Conference on Machine Learning, 227-234, Sydney,
Australia.

Mitchell, T. 1997. Machine Learning. Sing.: McGraw-Hill.
Nareyek, A. 2004. Al in Computer Games. ACM Queue. 1(10).
Rabin, S. eds. 2002. Al Game Programming Wisdom. Charles
River Media.

Sutton, R. S., and Barto, A. G. eds. 1998. Reinforcement
Learning, An Introduction. MIT Press.

Whiteson, S., Stone, P. 2003. Concurrent Layered Learning. In
The Proceedings of the second international joint conference on
Autonomous agents and multiagent systems. 193-200. New York,
NY, USA: ACM Press

Zucker, J.-D., Bredéche, N., and Saitta, L. 2002. Abstracting
Visual Percepts to learn Concepts. Symposium on Abstraction
Reformulation and Approximation. SARA’2002. Canada.

