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Abstract 
 
This thesis investigates the challenges posed by the application of reinforcement learning to 
modern strategy games. These games require the players to manage a high number of units placed 
in a very sophisticated environment so as to achieve collectively a common goal. Designing 
interesting solutions for such applications require tackling simultaneously several challenging 
issues (decision-making under uncertainty, spatial and temporal reasoning, coordination between 
units, etc.), each of which can represent an important research problem in itself. We propose 
STRADA, a novel integrated learning approach to the automatic design of ADAptive behavioral 
STRategies for modern strategy games. STRADA combines state-of-the-art techniques from several 
areas of machine learning with new ideas. In particular, it investigates two main issues: 
complexity reduction of the problem through decomposing the decision-making and abstracting 
state and action spaces. Moreover, acceleration of the process of learning from interaction by 
generalizing value function and bootstrapping the acquisition of experience. Solutions to these 
issues are combined into an efficient learning system, whose performance is demonstrated on the 
task of learning valuable behavioral strategies for a commercial wargame. The resulting system 
outperforms by far the existing commercial script-based solution. 
 
Keywords: reinforcement learning, strategic decision-making, modern strategy games, 
abstraction, terrain analysis, multiagent systems. 
 

1 Introduction  
In this thesis, we investigate the use of reinforcement learning (RL) techniques to design efficient 
behavioral strategies for modern strategy games. Modern strategy games range from real-time 
strategy games, such as Age of Empires® (Microsoft®), to turn-based strategy games, such as 
John Tiller’s Battleground™ series (Talonsoft®). They are characterized by huge state and action 
spaces, stochastic environments, and a large number of units that can act simultaneously to 
achieve a long-term common goal. They constitute large-scale multiagent simulations that share 
many characteristics with real-world problems (Schaeffer & Van den Herik, 2002; Buro, 2003) 
and whose complexity dwarfs that of problems typically addressed by the RL community 
(Madeira et al., 2004). 

Consider Battleground™ (Talonsoft®), a turn-based commercial wargame that we take as case 
study (see Section 4). Because of its parallel nature (at each turn, all military units can act 
simultaneously), the complexity of a centralized action selection for each side grows 
exponentially with the number of units it controls (if there are U units, each with A possible 
actions, the resulting branching factor is AU). Regarding the configuration of a very simple 
Battleground™ scenario, the two armies contain respectively 101 and 83 front-line units that are 
placed on a small map of 35x20 hexagons. The combinatory explosion here leads to a huge state 
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space in the order of 102000 and a maneuver action space of 10179 concerning one army and of 
10147 concerning the other. 

This high complexity still constitutes important theoretical and practical challenges to state-
of-the-art methods, techniques and algorithms from the field of RL. Typically, in a research 
setting, challenging issues are studied in isolation while making simplifying assumptions about 
other aspects of the problem. Although satisfactory solutions exist for many issues, a great 
challenge remains in integrating them into a single working system because properties of 
different techniques can be affected and altered by simultaneous applications of methods. This is 
the case, for example, when single-agent learning techniques are applied in a multiagent setting or 
when function approximation is used with RL. So, a natural question is to ask whether state-of-
the-art RL techniques are up to the job of tackling the complexity of learning in modern strategy 
games. 

Taking some inspiration from abstraction techniques, we develop some new ideas and 
combine them into an approach to the automatic design of adaptive behavioral strategies for 
modern strategy games. This approach, called STRADA, explores two main issues: (1) treatment 
and management of domain knowledge for decomposing the decision-making problem in a 
distributed fashion and abstracting state and action spaces; and (2) acceleration of the process of 
learning from interaction by generalizing value functions and bootstrapping the acquisition of 
learning experience. It is the simultaneous treatment of these issues that lets us construct a system 
that is able to design automatically efficient behavioral strategies for modern strategy games. The 
resulting system is successfully applied to Battleground™, outperforming by far the existing 
commercial script-based solution. 

The rest of the manuscript is organized as follows. In the next section, we briefly introduce 
RL, discuss the challenges for its application to modern strategy games and give some directions 
to allow this application. Following this, we present all the aspects of the STRADA approach and 
briefly describe our case study, the Battleground™ wargame. We present then experiments 
applying our approach to Battleground™, carrying out an evaluation of various setups of our 
learning agents and comparing their performance to that of baseline techniques (a script-based 
agent and a random agent) and a human player. These setups focus especially on key issues of 
coordination for multi-agent learning, including inter-agent communication and the design of 
adequate individual reward functions. Finally, we conclude by outlining possible improvements 
and directions for future work. 

2 Background 

2.1 Reinforcement Leaning 
Reinforcement learning is a general approach for learning behavioral strategies by maximizing a 
cumulative reward from interaction with a stochastic and unknown environment (Sutton & Barto, 
1998). Markov decision processes (MDPs) present one natural way to formulate RL decision-
making. 

A MDP is defined as a 4-tuple (S,A,P,R), in which S = (v1,...,vn) is a finite set of states (such 
as the situation of the game at a given time) defined in terms of state variables, A = (a1,...,am) is a 
finite set of actions (what actions the player can choose from) defined in terms of actions 
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variables, P: S x A x S →[0, 1] is a state transition probability function and R: S x A x S →ℜ  is a 
reward function defined as a real-valued bounded function. The transition probability function P 
and the reward function R define the dynamics of the environment where an agent makes 
sequential decisions. a

ssP '  denotes the probability that action a, when executed by the agent in 
state s, transfers the environment to state s’. a

ssR '  is the reward of taking action a in state s and 
observing s' at the next state. Transitions and rewards are generally stochastic and follow the 
Markov property. The goal of the RL agent is to find a policy π: S x A → [0, 1] which maximizes 
the cumulative reward over time. A policy denotes the probability that the agent takes action a 
when the environment is in state s. 

Many RL algorithms estimate value functions, which are defined with respect to policies and 
reflect the expected value of the long-term accumulated reward. These algorithms determine how 
agents must modify their strategy to maximize the long-term accumulated reward. Sarsa (Sutton 
& Barto, 1998) and Q-learning (Watkins & Dayan, 1992) are examples of classical RL 
algorithms. They are variations of the standard dynamic programming methods that can be used 
on line, and do not require a model of the environment. However, these algorithms suffer from 
the curse of dimensionality. 

Many extensions employing generalization methods were suggested in the last years in order 
to treat problems with large state spaces (Sutton & Barto, 1998; Santamaria, Sutton & Ram, 1998; 
Smart & Kaelbling, 2000; Ratitch & Precup, 2004). Generalization methods combined with 
reinforcement learning is referred as function approximation; it takes examples from a target 
function (that is, a value function) and attempts to generalize from them to construct an 
approximation of the entire function. 

2.2 Challenges in Applying Reinforcement Learning to Modern Strategy Games 
It is known that RL is very sensitive to the size of state and action spaces. So, we cannot directly 
repeat with modern strategy games the success obtained with TD-Gammon (Tesauro, 2002) using 
entire state and action spaces. In that respect, modern strategy games such as wargames are closer 
to real-world problems than classical games. An adequate treatment of the problem is crucial in 
order to propose a solution that obtains satisfactory results in a reasonable time and memory. 

In this context, two central questions directly related to the complexity are mentioned 
(Corruble, 2000; Corruble, Madeira & Ramalho, 2002; Madeira et al., 2004). Firstly, how to 
represent an environment state (a situation of a game in a given time) whether one cannot do it by 
employing an entire situation? Secondly, how to choose coherent actions for a set of agents 
according to the situation? In this thesis, we study and propose some answers to these issues. 

First of all, it is crucial to determine the architecture of the decision-making system. Is this as 
a human player who controls simultaneously a large number of units (a monolithic system 
controlling the behavior of several units)? Is this the individual decision-making of each unit 
(multi-agent distributed systems producing local and independent behaviors)? Both approaches 
present advantages and disadvantages. 

2.2.1 Centralized approach 
The main advantage of the centralized approach is that it can obtain a certain coordination of the 
units. It presents then a high probability to achieve optimal results. Moreover, the problem is 
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adapted to the MDP formalism, since the environment description provides the situation of all 
units and the selected action is a joint action of all units (Boutilier, 1996). Hence, it is 
theoretically possible to directly employ RL algorithms combined with a function approximator. 

In this context, a natural approach to employ function approximators would be one that 
generalizes state and action spaces simultaneously (Baird & Klopf, 1993; Ratitch, 2005). 
However, a function approximator which provides generalization to large discrete action spaces, 
such as those handled in Battleground™, always poses significant practical challenges to RL 
algorithms. So, at the current state of research, it seems impractical to use a centralized approach 
for Battleground™. 

2.2.2 Multi-agent Distributed Approach 
Another useful AI approach is that of the multi-agent distributed systems (Weiss, 2000). Each 
agent perceives his environment state and uses it to make a personal decision. Capacities of 
perception and decision-making are distributed, which avoids a combinatorial explosion. 

However, the MDP formalism is not well adapted to this approach. First of all, since each 
agent is modeled as a local MDP which does not take into account the other agents of the 
environment, it does not perceive a full environment state (the environment is partially 
observable) (Cassandra, 1998; Kaelbling, Littman & Cassandra, 1998). Secondly, MDPs only 
guarantee convergence of RL algorithms to stationary environments. However, since agents learn 
simultaneously, they constitute uncertain elements which bring to a non-stationary environment. 
Consequently, the Markov property is not satisfied and the collective solutions can become sub-
optimal because they depend on the local behavior of each agent and its interactions with other 
agents. 

So, one can note that traditional methods of RL do not transpose easily to the multi-agent 
framework. They require an adaptation in order to allow a collective effort of all agents. This 
naturally poses a fundamental problem: how to coordinate individual actions of the agents 
(Malone & Crowston, 1994)? This need for coordination is particularly evident in multi-agents 
problems constituted of heterogeneous agents (each agent has a limited capacity of action) 
(Paquet, 2006). It is exactly the case in modern strategy games. 

Solutions to problems of coordination can be divided in three principal approaches (Boutilier, 
1996): conventions, communication and learning. We explore in this thesis reinforcement 
learning of coordination as this approach seems promising for agents evolving in complex and 
dynamic environments and interacting the ones with the others. Moreover, it does not require 
specific prior knowledge. 

2.3 Reinforcement Learning of Coordination 
Approaches for reinforcement learning of coordination can be classified in three main groups: (1) 
Multi-agent Markov decision process (MMDP); (2) emergent coordination; and (3) knowledge-
based coordination. 

2.3.1 Multiagent Markov Decision Process 
Multi-agent Markov decision processes (MMDPs) formalize a multi-agent coordination problem. 
This formalism can be seen as similar to conventional MDP, except that actions are implemented 
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in a distributed way and rewards are independent and arbitrary for each agent (Boutilier, 1996). 
Agents coordinate by using a probability distribution for each action of all agents. MMDPs are 
classified along two axes: (1) a general case MMDP (each agent i receives an independent reward 
ri) based on Markov games (Littman, 1994, 2001; Uther & Veloso, 1997; Hu & Wellman, 1998, 
2003; Tesauro, 2004); and (2) a special case of fully cooperative MMDP or Joint-Action Learners 
(n cooperative agents share the same reward nrr ==K1 ) (Claus & Boutilier, 1998; Kapetanakis & 
Kudenko, 2002, 2004). Although these approaches have all interesting characteristics and have 
contributed a lot to the domain, they pose significant practical problems since each agent needs to 
know the strategies adopted by all agents. 

2.3.2 Emergent Coordination 
In the emergent coordination approach, agents do not know the strategy adopted by other agents 
(Independent Learners in Claus & Boutilier, 1998). Agents are seen as elements of the 
environment, being influenced mutually only by the bias of their common environment. This 
approach is more general than MMDP. It allows then a larger applicability, especially to 
problems where a lot of agents are placed in the environment. However, coordination is more 
difficult here. Much work can be mentioned in that area: global and cooperative learning (Crites 
& Barto, 1998), local and competitive learning (Sen & Weiss, 2000), COllective INtelligence 
(Wolpert & Tumer, 1999; Tumer & Wolpert, 2004), learning with communication (Riedmiller & 
Merke, 2002). Although this approach is powerful, it also presents significant limitations when it 
is applied to large action spaces. 

2.3.3 Knowledge-based Coordination 
In the last years, the field of reinforcement learning has explored the idea that the application of 
prior knowledge may allow much faster learning and may indeed be essential when one needs to 
deal with complex real-world environments. Two main directions are followed: MDP 
decomposition and MDP factorization. 

The principle of the resolution by decomposition is a natural idea which is often exploited in 
AI (Simon, 1981). In this context, many researchers have turned their attention to hierarchical 
methods that incorporate subtasks and state abstractions in order to combat the curse of 
dimensionality (Parr & Russell, 1998; Sutton, Precup & Singh, 1999; Dietterich, 2000; Andre & 
Russell, 2002; Makar, Mahadevan & Ghavamzadeh, 2001; Barto & Mahadevan, 2003; Marthi et 
al., 2005; Ghavamzadeh, Mahadevan & Makar, 2006). Hierarchical reinforcement learning deals 
with principled ways of exploiting temporal abstraction, where decisions are not required at each 
step, but rather invoke the execution of temporal-extended activities which follow their own 
policy until termination (Barto & Mahadevan, 2003). The crucial problem here is that this 
approach requires significant prior knowledge in order to decompose tasks and their value 
function. 

Others researchers have worked on complex simulations where agent organization can be 
exploited to reduce the complexity of the joint action space. In this context, a promising approach 
that involves the use of a coordination graph for efficient distributed learning in factored MDPs 
was proposed (Boutilier, Dearden & Goldszmidt, 2000; Guestrin, Koller & Parr, 2001; Guestrin, 
Lagoudakis & Parr 2002; Guestrin et al., 2003b). The approach makes factored MDPs applicable 
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to the control of large stochastic dynamical systems, coordinating and communicating the agents 
directly from its structure. In this graph, each node represents an agent, and an edge indicates that 
the corresponding agents have to coordinate their actions. In order to reach a jointly optimal 
action, a variable elimination algorithm is applied that iteratively solves the local coordination 
problems one by one and propagates the result through the graph using a message passing 
scheme. The solution is exponential with respect the width of the coordination graph instead of 
the number of agents. However, this approach assumes a fixed coordination graph that cannot be 
easily determined in modern strategy games because units coordinate with others according to 
their tactical situation at a given time. 

3 Decomposition and Abstraction Based on Domain Knowledge: an Alternative 
for Modern Strategy Games 

In the previous section, we stated that the use of prior knowledge can considerably help to deal 
with the complexity of decision-making in complex problems, accelerating remarkably the 
learning process. So, we take some inspiration from these approaches, especially the concept of 
abstraction of state and action spaces. Although there is no general method to do this, we consider 
that problems generally have specific structures (knowledge available) which can be exploited in 
order to establish efficient decomposition. For example, a simple exploitation of the rules of 
modern strategy games can help identifying the characteristics of their units and the organization 
of groups (society, civilization, army, etc.). In Age of Empires® for instance, the scenario takes 
place at a medieval age, with groups of units composed of archers, infantry and cavalry. In 
Battleground™, a scenario takes place at a Napoleonic age, with groups of units composed of 
infantry, artillery and cavalry. So, the decision-making can be naturally organized as a structure 
in which each agent has a specific role. In that case, we can define a value function for groups of 
agents based only on the structure of familiar elements – state and action spaces and reward 
function. 

Moreover, we consider that modern strategy games most often offer a geographical map that 
can be explored. So, domain knowledge regarding military decision-making and spatial 
information is of crucial importance in there (Corruble, Madeira & Ramalho, 2002). It can guide 
us toward the purpose of abstraction, a promising approach for reducing complexity in learning 
problems, which consists in simplifying the level of detail of the information available 
(Giunchiglia & Walsh, 1992; Blum & Langley, 1997; Saitta & Zucker, 2001). There are several 
possibilities to change from a representation with full information to one at an abstracted level. 
One can, for example, remove irrelevant variables, generalize information, add constraints, etc. 
(Jong & Stone, 2005; Li, Walsh & Littman, 2006). In this context, relevant information can be 
obtained by techniques known as terrain analysis. 

3.1.1 Terrain Analysis 
Terrain analysis is a process that provides guidelines for gathering, analysis, and organization of 
intelligence, identifying areas of the battlefield that affect courses of action (Grindle et al., 2004). 
It interprets natural and man-made features of geographic areas, together with the influences of 
weather, to determine their effects on military strategic and tactical maneuvers. Strategic 
maneuver is considered to be high-level decision-making where leaders can obtain a broad 
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overview of the battlefield. Tactical analysis provides the leader with a much more detailed view 
of specific areas-of-interest on the battlefield. The importance of the study and analysis of terrain 
has been recognized for hundreds of years in military science. Moreover, its importance has been 
recently recognized in the domain of modern strategy games (Rabin 2003). 

Understanding terrain is especially useful because we can identify ideal locations for scouting 
parties, best line of sight/fire and also the ability to hide troops and equipment (Corruble, Madeira 
& Ramalho, 2002). Moreover, we can identify significant regions of the terrain where intelligence 
efforts should be focused. The military aspect of the terrain can be analyzed based on the goal of 
a unit, level of command, composition of the forces involved (friendly and enemies), type of 
operation, and equipments involved. Based on these needs, one can create various tactical 
decision aids by integrating terrain data together with dynamic battlefield information. 
Consequently, all of that information can be grouped into a dataset, where a leader can look at an 
integrated state representation and get only what he needs to make a decision. 

3.1.2 Qualitative Spatial Reasoning 
Qualitative spatial reasoning (Cohn & Hazarika, 2001) provide also techniques that can help the 
process of terrain analysis in modern strategy games (Forbus, Mahoney & Dill, 2001). The 
essence of these techniques is to make qualitative abstractions to represent continuous properties 
of the space with discrete systems of symbols. Using these properties, one can make predictions, 
diagnose and explain the behavior of physical systems in a qualitative manner without recourse to 
an often intractable quantitative model. 

This process can be based, for instance, on partitions of the space through a combination of 
physical and task-specific constraints. In that case, specific locations (coordinates on the map) 
corresponding low-level representations and displaying one of a set of different terrain features 
can be ignored by high-level representations, but rather summarize them in larger objects such as 
zones and sub-zones of the map. Zone and sub-zone types can be represented by the dominant 
terrain feature in a corresponding set of locations. The main role is to determine how troops can 
be deployed in the quickest and most effective way. 

4 STRADA: an Approach for the Automatic Design of ADAptive STRategies 
In this section, we develop some new ideas and combine them with state-of-the-art techniques in 
order to propose an innovative approach to the automatic design of adaptive behavioral strategies 
for modern strategy games. This approach, called STRADA (Madeira et al., 2004; Madeira, 
Corruble & Ramalho, 2005, 2006), is composed of five elements: (1) decomposition of the 
decision-making process by using a natural hierarchical organization of groups of agents; (2) 
abstraction of state and action spaces by designing proper and tractable state and action 
representations for RL in a largely automated fashion; (3) generalization of value functions by 
using state-of-the-art function approximators; (4) acquisition of valuable learning experience by 
playing against other AI opponents; and (5) learning by steps by adopting a particular bootstrap 
mechanism. 
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4.1 Decomposing the Decision-Making Process 
In modern strategy games as indeed in many real-life situations, one can see that a hierarchical 
structure of command and control is a natural candidate for the decomposition of the decision-
making process. In this structure, terminal nodes correspond to units placed on the terrain and the 
non-terminal nodes represent the leaders of the groups of units (see Figure 1). The ability for 
decision-making is distributed across specific groups, also providing a framework to guide the 
flow of information between them. Subordinate agents receive orders from theirs superiors and 
use their domain-specific knowledge and local information to make their own decisions. 

 

Figure 1. Hierarchical decomposition of a society, civilization, army, etc. in specialized groups of 
agents. 

A main advantage of this structure is that it allows high-level agents (who do not act directly 
on the environment because they cannot carry out physical actions) to make strategic decisions to 
accomplish high-level goals, only considering information at an appropriate level of detail (in this 
case, little detail but wide scope). It allows reducing the learning complexity for each group of 
agents (Madeira et al., 2004). Strategic decisions are made at a high level to fulfill the 
requirements of the groups of agents, while tactical decisions control the behavior of the small 
groups of units and individual low-level units. These decisions are considered as semi-
independent modules and become more detailed as one goes down in the hierarchy. They can be 
organized in two categories: those which relate to elementary actions of the lower level (fire, turn, 
move, etc.) and those which combine elementary actions to allow high-level behaviors for groups 
(protected movement, concentrated attack, monitoring, etc.). 

4.1.1 Communication established between agents in the hierarchy 
However, the number of low-level units to be controlled and the intensity of interaction between 
their strategies increase dramatically when learning strategies for lower levels of the hierarchy. 
This requires some degree of coordination between the leaders in order to provide a mechanism 
in which the units work as a team (Tambe & Zhang, 2000). This issue is essential and subject to 
theoretical and empirical studies in the fields of multi-agent learning (Claus & Boutilier, 1998; 
Guestrin, Lagoudakis & Parr, 2002). 
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In this context, hierarchies can provide coordination mechanisms by modeling 
communication between agents as follows: (1) between a high-level agent and its subordinates; 
and (2) between agents of the same group (intra-group communication). The challenge then 
consists in establishing a trade-off between the individual goal taken by each agent and the goal 
of its group. 

4.1.2 Structure of value function 
The value function estimated by the RL algorithm can be directly represented in the hierarchy. 
Each node contains a local value function which represents the estimated values of the actions 
projected in the action space of the units belonging to this node. Local value functions of child 
nodes are combined towards parent nodes. So, the global computation of estimated values of 
actions could be carried out by engaging low-level actions for all nodes, then by propagating 
values from the lower level to the highest level of the hierarchy. The value obtained with the root 
would represent the value of the collective action of all units. However, this “bottom-up” 
approach would require us to learn the fully hierarchy simultaneously, certainly demanding a 
significant time of learning. 

The STRADA approach uses another mechanism, detailed in the next sections, in which the 
hierarchical decomposition of specialized groups of agents has five main purposes: (1) it 
organizes the decision-making process; (2) it limits and guides communication between groups of 
agents (agents interact vertically, and horizontally inside their group); (3) it provides a guide for 
the abstraction of state and action spaces; (4) it provides a structure for the definition of value 
function; and (5) it allows learning by stages. 

4.2 Abstracting State and Action Spaces 
It seems essential that high-level agents be placed in more abstract state and action spaces in 
order to make strategic decisions. They do not need to be overwhelmed by the intractably large 
number of possibilities which a centralized agent would have to consider if it possessed all the 
information pertaining to individual low-level units. They must receive only strategic information 
from main groups of units, make strategic decisions founded on this information and give orders 
to their subordinates. Subordinates perceive information at another level of detail (less strategic 
and more tactic) and act in a relatively independent way, while being in harmony with the orders 
provided by their superiors. 

Taking inspiration from concepts of terrain analysis and qualitative spatial reasoning 
techniques, we designed an algorithm for the semi-automatic generation of adequate state and 
action representations for agents of our hierarchical structure of groups. This algorithm analyzes 
the terrain by using detailed game scenario information, abstracts it in order to generate high-
level topological concepts and generates representations which will be used as bases for the 
decision-making. This abstraction process is carried out in two main steps: abstraction of the 
action space and abstraction of the state space. 

4.2.1 Abstraction of the Action Space 
Tactical action spaces of modern strategy games are generally composed of the combination of 
two main variables: a location on the map and an elementary task to accomplish at this location. 
In order to adapt tactical action spaces at the strategic level, we propose to abstract both variables. 
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On one hand, we could gather a certain number of elementary maneuver tasks and combine 
steering parameters such as speed, discretion, safety and mass movement concentration to define 
high-level maneuvers (monitoring, exploration, occupation, etc.) (Corruble, Madeira & Ramalho, 
2002). Nevertheless, high-level maneuvers are not yet defined automatically by our algorithm. 

On the other hand, we explore the map in order to find key locations. A key location is any 
position on the map whose control is likely to give distinct military advantage to the force that 
holds it. For instance, a river is an obstacle that impedes or prevents the maneuver of forces. 
Finding key locations such as bridges is fundamental since it lets the leader make inferences 
about possible degree of vulnerability of friendly forces to enemy attacks. Our algorithm uses key 
map locations in order to reduce considerably the size of the action space. Figure 2 illustrates the 
identification of key locations on a real map to demonstrate the generality of our approach. As a 
result, once high-level maneuvers are given and key locations are identified, they are combined to 
generate the strategic action space. 

 
 

Figure 2. Identification of key locations on a real map. Bridges on the river, the castle on the top 
of the hill, the top of the mountain, large crossroads in the center town, crossroads of access for 

the city, are all good examples of key locations. 

 

4.2.2 Abstraction of the State Space 
State spaces of modern strategy games are composed of the combination of a number of variables 
which are used to represent full game situations. Our proposal for abstracting them consists, on 
one hand, in generating a summary of the state of all units belonging to a group in the hierarchy. 
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This summary can be composed of relevant variables such as center of mass, and levels of 
strength, fatigue, quality, mobility and ammunition of the group. Actually, variables used to 
compose summaries are not yet identified automatically by our algorithm. 

On the other hand, the key locations identified previously in the abstraction of action spaces 
are used as seeds to be expanded progressively by adding neighboring cases until a full 
partitioning of the map into strategic zones has been reached. A strategic zone is a region of the 
map where terrain information is gathered in order to provide large-granularity information. 

It is associated to a category of mobility (easy mobility, restricted mobility or no mobility) 
according to the nature of the terrain. Figure 3 illustrates strategic zones generated using as seeds 
the key locations identified on the real map of Figure 2. Such information, combined with a 
summary state of friendly and enemy units placed on each zone, can provide more intelligent 
movement on the terrain. Although type and characteristics of strategic zones can change from a 
game to another, the idea here is always the same because we take into account only a global 
vision of the terrain. 

The state representation is always composed of two main groups of variables where leaders 
can get only the information they need to make relevant decisions: a summarized description of a 
group of units for which an order is under consideration, and a summarized description of 
friendly and enemy forces for each strategic zone on the map. 

 
 

Figure 3. Identification of key locations and strategic zones on a real map. The strategic zones are 
generated by propagating key locations in order to aggregate adjacent locations, taking into 

account physical constraints of the terrain. 
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4.2.3 Algorithm Definition 
Our algorithm, named generateStateActionRepresentation (see Figure 4) takes into account 
some features of a given scenario: objectives, fixed objects (ease of access and obstacles), and a 
two-dimensional map topography (the map locations are organized as a grid – squares, hexagons, 
etc.). In addition to this, it takes also as input a set of players, a set of high-level maneuvers, a set 
of variables describing the situation of a group, and a set of variables describing the situation of 
units placed on zones. The algorithm is composed of four steps as described below. 
 
 

1:     generateStateActionRepresentation( Objectives, Objects, MapLocations, Players, 
2:                                                                  HighLevelManeuvers, GroupDescription, ZoneDescription ) 
3:     { 
4:         KeyLocations ← identifyKeyLocations( Objectives, Objects, MapLocations ) 
5:         StrategicZones ← identifyStrategicZones( KeyLocations, MapLocations ) 
6:         StrategicZones ← fusionZones( StrategicZones, MapLocations ) 
7:         ActionRepresentation ← HighLevelManeuvers  x  KeyLocations 
8:         ZoneRepresentation ← ZoneDescription  x  StrategicZones  x  Players 
9:         StateRepresentation ← GroupDescription  ∪  ZoneRepresentation 
10:       return ActionRepresentation  and  StateRepresentation 
11:   } 
 

Figure 4. Sketch of algorithm for terrain analysis and abstraction of state and action spaces. 

4.2.3.1 Identification of Key Locations (see Figure 5) 
Locations, fixed objects and objectives on the map are evaluated by the isRelevantLocation 
function to identify those which are likely to give advantage to units placed on them (key 
locations). Then, adjacent key locations identified are aggregated in zones by the fusionZones 
function (see Figure 7). Finally, a location in each zone (that is considered the most relevant by 
the identifyTheMostRelevantLocation function) goes into to the list of key locations that is used 
to generate the abstracted action space later on. 
 
 

1:     identifyKeyLocations( Objectives, Objects, MapLocations ) 
2:     { 
3:         TacticalZones ← ∅ 
4:         for all oi ∈ ( Objectives ∪ Objects ) do 
5:            if isRelevantLocation( oi ) ∧ ( {oi} ⊄ ZonesTactiques ) then 
6:               Zone ← {oi} 
7:               TacticalZones ← TacticalZones ∪ {Zone} 
8:            end if 
9:         end for 
10:       for all ci ∈ MapLocations do 
11:          if isRelevantLocation( ci ) ∧ ( {ci} ⊄ TacticalZones ) then 
12:             Zone ← {ci} 
13:             TacticalZones ← TacticalZones ∪ {Zone} 
14:          end if 
15:       end for 
16:       TacticalZones ← fusionZones( TacticalZones, MapLocations ) 
17:       KeyLocations ← ∅ 
18:       for all Zi ∈ TacticalZones faire 
19:          case ← identifyTheMostRelevantLocation( Zi ) 
20:          KeyLocations ← KeyLocations ∪ {case} 
21:       end for 
22:       return KeyLocations 
23:   } 
 

Figure 5. Sketch of algorithm for identifying key locations. 



ADAPTIVE AGENTS FOR MODERN STRATEGY GAMES: AN APPROACH BASED ON REINFORCEMENT LEARNING 

  13

4.2.3.2 Identification of Strategic Zones (see Figure 6) 
This step is divided into three sub-steps. First of all, locations whose associated terrain is of 
restricted mobility are identified on the map by the isTerrainOfRestrictedMobility function in 
order to generate preliminary strategic zones. Each non-aggregated location (state verified by the 
isMarkedLocation function) of this terrain type is used as seeds to create a new strategic zone 
and to be then expanded progressively by adding adjacent locations of the same terrain type using 
the propagateZoneSameTerrain recursive function. Following this, key locations identified in 
the prior step are also used as seeds to be expanded progressively by adding non-aggregated 
adjacent locations using the propagateZones function until a full partitioning of the map into 
strategic zones has been reached. The expansion rate of each location here takes into account the 
relation between two factors: a minimum threshold and an accumulated weight of aggregation. 
The minimum threshold is a parameter that must be achieved for allowing the addition of an 
adjacent case to a zone. It is computed by several criteria: the movement cost of the terrain type, 
the eventual obstacles and eases of access, as well as the variation of altitude. The accumulated 
weight of aggregation is a parameter that indicates the probability to add a location to a zone. It is 
initialized to zero and it is reinforced after each aggregation failure. Finally, if needed, “lost” 
strategic zones are created if there still are non-aggregated locations on the map. The procedure 
stops when there is no more free locations on the map. All strategic zones created are then 
combined in a single list. 
 
 

1:   identifyStrategicZones( KeyLocations, MapLocations ) 
2:   { 
3:       RestrictedZones ← ∅ 
4:       for all ci ∈ MapLocations do 
5:          if ¬ isMarkedLocation( ci ) ∧ isTerrainOfRestrictedMobility( ci ) then 
6:             markLocation( ci ) 
7:             Zone ← {ci} 
8:             Zone ← propagateZoneSameTerrain( Zone, MapLocations ) 
9:             RestrictedZones ← RestrictedZones ∪ {Zone} 
10:        end if 
11:     end for 
12:     StrategicZones ← ∅ 
13:     for all pi ∈ KeyLocations do 
14:        if ¬ isMarkedLocation( pi ) then 
15:           markLocation( pi ) 
16:           StrategicZones ← StrategicZones ∪ {{pi}} 
17:        end if 
18:     end for 
19:     StrategicZones ← propagateZones( StrategicZones, MapLocations ) 
20:     LostZones ← ∅ 
21:     for all ci ∈ MapLocations do 
22:        if ¬ isMarkedLocation( ci ) then 
23:           markLocation( ci ) 
24:           Zone ← {ci} 
25:           Zone ← propagateZoneSameTerrain( Zone, MapLocations ) 
26:           LostZones ← LostZones ∪ {Zone} 
27:        end if 
28:     end for 
29:     StrategicZones ← StrategicZones ∪ RestrictedZones ∪ LostZones 
30:     return StrategicZones 
31: } 
 

Figure 6. Sketch of algorithm for identifying strategic zones. 
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4.2.3.3 Fusion of Strategic Zones (see Figure 7) 
Strategic zones are evaluated by the isRelevantZone function for detecting those in which size is 
relevant when compared to the map size. Small zones are absorbed by adjacent zones of larger 
boundary. 
 
 

1:   fusionZones( Zones, MapLocations ) 
2:   { 
3:       for all Zi ∈ Zones do 
4:          if ¬ isRelevantZone( Zi, MapLocations ) do 
5:             AdjacentZones ← ∅ 
6:             for all ( Zj ∈ Zones ) ∧ ( i ≠ j ) faire 
7:                if isAdjacentZone( Zi, Zj ) then 
8:                   AdjacentZones ← AdjacentZones ∪ {Zj} 
9:                end if 
10:           end for 
11:           ZoneOfLargerBoundary ← getZoneOfLargerBoundary( AdjacentZones, Zi ) 
12:           Zones ← Zones \ ( {ZoneOfLargerBoundary} ∪ {Zi} ) 
13:           MergedZone ← ZoneOfLargerBoundary ∪ Zi 
14:           Zones ← Zones ∪ {MergedZone} 
15:        end if 
16:     end for 
17:     return Zones 
18: } 
 

Figure 7. Sketch of algorithm for fusion of zones. 

4.2.3.4 Generation of State and Action Representations (see Figure 4) 
A state representation is built based on the results of the three first steps, by a projection onto a 
predefined list of relevant variables describing the situation of a group and the Cartesian product 
of three sets (strategic zones, variables describing the situation of units placed on each zone, and 
players). An action representation is built based on the Cartesian product of high-level maneuvers and 
key locations. 

4.3 Generalizing value functions 
It is well known that RL systems must use parameterized function approximation in order to 
generalize between similar situations (Sutton & Barto, 1998). This is crucial to obtain satisfactory 
results in a reasonable time and memory for MDPs with large or continuous state spaces. 
However, function approximation in the context of RL is harder than in the classical supervised 
learning setting (Thrun & Schwartz, 1993; Ratitch & Precup, 2002) and still present important 
difficulties when applied to complex problems. In fact, in RL, the target function (that is, the 
value function) is estimated gradually and thus appears to be non-stationary, whereas in 
supervised learning, many techniques assume a stationary target function. Moreover, the 
stochastic characteristics of the environment of modern strategy games and the exploration 
process may introduce variability into the training data. 

Although the properties of RL algorithms using function approximation are still not fully 
understood, and despite the absence of general theoretical convergence guarantee, in practice, the 
use of function approximators has already proven quite successful in handling some realistic 
domains (Crites & Barto, 1996; Santamaria, Sutton & Ram, 1998; Tesauro, 2002; Coulom, 2002). 
So, the STRADA approach employs function approximators in order to complete its basic 
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structure. In this context, linear and non-linear function approximators (Sutton & Barto, 1998) 
have been considered here. 

4.4 Generating Valuable Learning Experience 
Once we have developed the foundation of our decision-making system, we tackle the issue of 
acquisition of experience in the process of learning from interaction. In general, experience can 
be gathered in all the situations which constitute learning opportunities. Games are a dream 
application domain for learning techniques as generating experience could not be easier: one just 
has to play. However, we look for a mechanism which generates worthy experience to speed up 
the learning process. 

The first option would be to have our system play against a good human player. 
Unfortunately, it is not viable for complex games as it would require the human player to play 
thousands of games (each game taking hours if not days) against an AI that would initially be a 
terrible player. Another data acquisition method is self-play (Kaelbling, Littman & Moore, 1996). 
However, the amount of time needed to learn a good strategy could be impractical here. 
Regarding the case of TD-Gammon (Tesauro, 2002), it took 6 millions trials to learn a great 
strategy by self-play. For our case study, the Battleground™ wargame, it would take orders of 
magnitude more because of the increased complexity. Yet 6 millions of games by self-play would 
already take over 30 years to simulate in a Pentium® 4 / 2.8GHZ / 1GB if we consider a simple 
scenario. 

Therefore, we opt for another path: it consists in using “hand-made” agents to play and learn 
against. In this context, a basic agent composed principally of tactical (or low-level) actions can 
be built relatively easily, designed using techniques such as rule bases. Then, we let our system 
(called the learning AI) play and learn against this “hand-made” AI (called bootstrap AI) 
(Madeira et al. 2004). However, experience acquired by playing always against the same 
opponent can produce a specific strategy which does not work very well when playing against 
other opponents. So, after learning against the bootstrap AI, we can consider other options such as 
self-play in order to improve the learnt strategy. 

4.5 Accelerating the Learning Process 
Once defined an adequate opponent model to play against, we configure the learning scenario 
with a particular mechanism. We consider that even with this adequate opponent, the learning AI 
could not address simultaneously the entire hierarchy decision-making of its side. In fact, learning 
simultaneously a strategy for all levels of the hierarchy is simply not feasible as a result of the 
extremely high dependence of the global performance on the performances of individual levels of 
the hierarchy. Indeed, learning to control an entire camp at once remains a very complex task to 
tackle (Stone, 2000), since failures are difficult to interpret as they can result from mistakes from 
any level of the hierarchy (Madeira et al., 2004). 

For this reason, we use another type of bootstrap mechanism by again taking advantage of the 
hierarchical decomposition (Madeira et al., 2004). This mechanism articulates some form of 
incremental learning inspired from various results (Stone, 2000; Dutech, Buffet & Charpillet, 
2001; Whiteson & Stone, 2003). It lets the learning AI take only partial control over its side (one 
or more levels), while the bootstrap AI takes control of the subordinate levels of the learning AI 
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side, in addition to the full control of the opponent side. This allows using the bootstrap AI as 
support in order to leave only a small part of the decision making process to be learned at any 
given time. For instance, we could apply this mechanism by learning strategies for the highest 
level of the hierarchy first and then progressively going down, that is, the learning AI chooses 
high-level orders for the subordinates it is in charge of, after which the bootstrap AI is used to 
implement these orders at the lower levels (see Figure 8). 

This is an important point in our approach because it allows incremental learning (top-down 
approach) of strategies with increasingly refined levels of specificity and detail. Then, one 
concentrates on the learning of the higher level (strategic decisions), whose tactical low-level 
decisions are made. Although more than one cycle of learning be probably needed before 
reaching a satisfying performance level, low-level units become increasingly efficient on their 
tasks and the global learning effort is improved. 

 

Figure 8. Scheme of the STRADA approach for the decision-making for each side. First of all, 
learning agents learn to select orders for the level 1 of the hierarchy. Then, based on the strategy 
learned for level 1, they learn to select orders for the level 2. This process goes on until the level 
where the selection of orders is learned by agents which their subordinates are controlled by the 

bootstrap agent. 

5 Case study 
In this section, we introduce our case study, the Battleground™ wargame, and apply the elements 
of the STRADA approach to it. 

5.1 Battleground™: a “Real-World” Problem from the Game Industry 

5.1.1 Description 
Battleground™ (John Tiller Games / Talonsoft®) is a turn-based commercial game that simulates 
the confrontation between two armies (zero-sum two players) at historical battlefields with 
detailed maps (see http://home.hiwaay.net/~tiller/). Its scenarios model units which move on 
maps composed of hundreds or thousands of hexagons (see Figure 9). These units are defined by 
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numerous characteristics (type, strength, fatigue, quality, formation, facing, morale, mobility, 
ammunition and visibility), some of which are dynamic. They are organized in a military 
hierarchy (army, corps, division, brigade and front-line) and can represent troops (battalions of 
infantry, regiments of cavalry, and batteries of artillery), skirmishers, individual leaders and 
supply wagons. 
 

 

Figure 9. A screenshot of the Battleground™ 6 “Napoleon in Russia” game. It simulates the 
confrontation between the French (blue units) and Russian (green units) armies in the context of 

the battle of Borodino in 1812. 

Each hexagon on the map contains a number of features such as terrain type (clear, forest, 
marsh, rough, water, etc.), movement cost for each type of unit, effect on the unit combat, 
elevation, eases of access (bridge, road, path, etc.) and obstacles (village, river, fort, embankment, 
etc.). Each of the unit’s characteristics and hexagon’s features has an associated effect on the 
unit’s abilities to move or fight. 

The combat resolution is a stochastic process whose result depends on a strength ratio 
between attacker and defender, as well as many other parameters for each side. The goal in each 
scenario is to either capture or hold specific objectives (hexagons), while trying to eliminate as 
many of the opponent’s units as possible as well as preserving its own. A game is won by the 
army that scores the highest number of points in a given amount of turns. 
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Battleground™ provides an option to play against the computer. This game AI was developed 
using script-based techniques. It works relatively well in the case of simple Battleground™ 
scenarios where strategic decision-making is not so crucial. However, in the case of more 
complex game scenarios, its loopholes can be easily exploited by a good human player. The 
option of using ad-hoc techniques with carefully hand-crafted military knowledge has usually 
been the most common course of action in the game industry, though it often leads to high 
development costs and low-quality automated opponents (Rabin, 2003; Nareyek, 2004). 

5.1.2 Modeling Battleground™ in a MDP Framework 
Battleground™ maps fairly directly onto the discrete-time, episodic, reinforcement-learning 
framework. We can model it, in a first stage, with a centralized perspective through an MDP 
(S,A,P,R). Leaders give orders in a sequential manner at the beginning of each turn, and front-line 
units perform these orders in a number of phases. When a turn ends, another begins, giving rise to 
a series of turns. 

The state space S is characterized by multiple variables describing the situation of a game 
scenario. It includes type, quality, formation, facing, location on the map, and levels of strength, 
fatigue, mobility, visibility, ammunition, disorder and morale, for each army unit (friendly and 
enemy). 

The action space A is composed of a set of elementary actions (or tactical orders). Elementary 
actions concern combat and short-term maneuver orders that are performed by the lower level 
(front-line) units of the military hierarchy. They correspond to single movement, charge of 
cavalry, firing, and body fighting, associated with a map location. 

The state transition probability function P is partly determined by the rules of the game (the 
rest depending on the opponent’s strategy), though RL can be applied even without explicitly 
knowing it because RL algorithms are designed to learn directly from experience. 

The reward function R can be designed based on the score of the game, itself computed by 
taking into account the values of each scenario objective and the losses to each side. 

Consider the case of the simple Battleground™ scenario discussed previously in the 
introduction, called Death in the Flèches (see Figure 10). It simulates a stage of the battle of 
Borodino (1812) between the French army of Napoleon and the Russian army of Kutuzov. The 
French army contains 101 front-line units, the Russian army contains 83 and 3 objectives are 
placed on a small map of 700 (35x20) hexagons. The combinatory explosion here leads to a huge 
state space in the order of 102000. Moreover, each unit may move to 60 different locations on 
average at each turn (depending on the unit type and terrain) and may combat any of 20 enemy 
units on average (depending on the unit type, weapons and visibility conditions). Considering this 
decision-making problem with a centralized perspective (a unique MDP), the complexity grows 
exponentially with the number of units (if there are U units, each with A possible actions, the 
resulting branching factor is AU). Then, this would lead to a maneuver action space of 60101 = 
10179 and a combat action space of 20101 = 10131 to the French army, and a maneuver action space 
of 6083 = 10147 and a combat action space of 2083 = 10107 to the Russian army. As a consequence 
of the complexity encountered here, designing strategies and determining what effects decisions 
have towards the goal of the game is a very hard problem. 
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Figure 10. A 2D screenshot that shows the starting configuration of the Death in the Flèches scenario. 
This scenario is composed of 101 French front-line units 83 Russian front-line units placed on a map 
arranged in 700 (35x20) hexagons (a hexagon can be occupied by several units). The mission of the 

French army is to conquer 3 objectives on the map (those marked by circles with respective scores points) 
which are dominated by the Russian army at the beginning of the game. A complete game is played on 10 

turns. The 1st corps is conducted by the Marshal Davout, the 3rd corps is conducted by the Marshal Ney 
and the imperial guard is conducted by the Marshal Mortier. 

 

5.2 Applying STRADA to Battleground™ 
Now that Battleground™ has been introduced, we describe the application of all elements of 
STRADA to it. In order to ascertain the generality of our approach with more confidence, we test it 
on two game scenarios: (1) the Death in the Flèches scenario introduced previously; and (2) a 
more complex scenario, called The Shevardino Redoubt, where strategic decision-making must be 
more carefully designed. 

5.2.1 Hierarchical Structure of Decision-Making 
Given that Battleground™ units constitute armies, we take inspiration from the historical model of 
the military hierarchical structure of command and control. This model proposes a natural 
organization of agents where the decision-making is carried out on several levels from strategic to 
tactical decisions. 

The hierarchy reproduced by Battleground™ is composed of five levels (army, corps, division, 
brigade and front-line) as described in Figure 11. Front-line units are placed physically on the 
ground and are asked to carry out orders provided by their superiors. According to the STRADA 
approach, this hierarchical structure guides us to abstract state and action spaces to a level of 
detail adapted to each agent. Moreover, it is designed in a fully distributed fashion, that is, instead 
of learning a unique strategy for a leader who knows all orders given for its subordinates, our 
system learns several strategies at the same hierarchical level, each one for an agent who gives 
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orders for a specific subordinate. Consequently, different techniques to coordinate agents 
controlling the same hierarchical level can be tested. 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Figure 11. Military hierarchical structure of command and control of Battleground™. 

 

5.2.2 Abstraction of State and Action Spaces 
In this section, we apply our abstraction algorithm to Battleground™. 

5.2.2.1 Death in the Flèches Scenario 
To design a strategic action space for the Death in the Flèches scenario, we choose five high-
level maneuvers predefined for the commercial game: 

• Extreme attack: units attack in a more concentrated formation, with maximum stacking in 
each location; 

• Regular attack: units move so as to take a specified location; 

• Wait order: units stop movement; 
• Regular defend: units move so as to hold a specified location; 

• Extreme defend: units do not fall back until all of the units of the organization are no 
longer in good order. 

To design a strategic state space, we choose 8 variables to describe the situation of groups 
and 2 variables to describe the situation of units in each zone (see Figure 12). 

Our abstraction algorithm analyzes the map topography to determine key locations (villages, 
forts, bridges, top of hills, scenario objectives, etc.) so as to abstract the action space. Then, it 
seeks hexagons in which associated terrain type is of restricted mobility (forests, rivers, etc.) to 
generate the first strategic zones on the map. It then propagates the identified key locations based 
on several criteria (movement cost of the terrain, ease of access, obstacles and elevation) in order 
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to aggregate adjacent hexagons. This process generates other strategic zones which can be 
merged. 
 
 

Group description (8 variables) 
• Center of mass (x, y) of the group on the map (2 variables); 
• Artillery, cavalry, and infantry strength levels (3 variables); 
• Fatigue, quality, and movement allowance levels (3 variables). 

Strategic zone description (2 variables) 
• Unit strength and fatigue levels (2 variables). 

 

Figure 12. Variables selected to describe the state of groups and zones for the Death in the Flèches 
scenario. 

The execution of our algorithm obtains as result 8 key locations and 6 strategic zones on the 
map (see Figure 13). So, a state representation composed of 32 variables arranged in two main 
datasets is built for the higher level of the hierarchy: 8 variables for group description and 24 
variables for strategic zone description (2 description variables  x  6 strategic zones  x  2 players). 

 

 
(a) 

 
   (b) 

 
(d) 

 
(c) 

Figure 13. Execution of the algorithm of terrain analysis for the Death in the Flèches scenario: (a) 
map before terrain analysis; (b) map after identification of key locations; (c) map after 

determination of restricted zones; (d) map after determination of the strategic zones by a 
progressive expansion of key locations and fusion of adjacent zones. 
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In addition, high-level maneuvers are associated with key locations on the map to compose an 
abstracted action space of 33 strategic actions (4 high-level maneuvers x 8 key locations + Wait 
order). 

Consequently, the complexity of the scenario is considerably reduced to a state space in the 
order of 1082 and an action space composed of 33 actions for each leader. This is a significant 
achievement when compared to the original problem complexity presented previously (state and 
action spaces in the order of 102000 and 10179 respectively). 

5.2.2.2 The Shevardino Redoubt Scenario 
To design a strategic action space for The Shevardino Redoubt scenario (see Figure 14), we 
choose the same five high-level maneuvers used for the Death in the Flèches scenario. However, 
to design a strategic state space, we choose 20 variables to describe the situation of groups and 2 
variables to describe the situation of units in each zone (see Figure 15). This representation takes 
into consideration the increased complexity of this scenario. The map is larger and a game is 
longer than in Death in the Flèches, scenario objectives are isolated, half of a game is played in 
darkness (mobility and visibility are restricted, which makes maneuver and combat much more 
difficult). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 14. A 2D screenshot that shows the starting configuration of The Shevardino Redoubt scenario. 
This scenario is composed of 117 French front-line units 64 Russian front-line units placed on a map 
arranged in 2184 (52x42) hexagons (a hexagon can be occupied by several units). The mission of the 

French army is to conquer 4 objectives on the map (those marked by circles with respective scores 
points) which are dominated by the Russian army at the beginning of the game. A complete game is 

played on 18 turns. The 1st corps is conducted by the Marshal Davout, the 5th corps is conducted by the 
Marshal Poniatowski and the reserve cavalry is conducted by the Marshal Murat. 
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Group description (20 variables) 
• Center of mass (x, y) of the group on the map (2 variables); 
• Artillery, cavalry, and infantry strength levels (3 variables); 
• Fatigue, quality, and movement allowance levels (3 variables); 
• Morale, disordered, and ammunition levels (3 variables); 
• Command and leadership rating levels of leaders (2 variables); 
• Friendly and enemy visibility (6 variables); 
• Game turn (1 variable). 

Strategic zone description (2 variables) 
• Unit strength and fatigue levels (2 variables). 

 

Figure 15. Variables selected to describe the state of groups and zones for The Shevardino Redoubt 
scenario. 

The execution of our algorithm of terrain analysis obtains as result 12 key locations and 12 
strategic zones (a river included) on the map (see Figure 16). 

 

 
(a) 

 
   (b) 

 
(d) 

 
(c) 

Figure 16. Execution of the algorithm of terrain analysis for The Shevardino Redoubt scenario: (a) 
map before terrain analysis; (b) map after identification of key locations; (c) map after 

determination of restricted zones; (d) map after determination of the strategic zones by a 
progressive expansion of key locations and fusion of adjacent zones. 
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So, a state representation composed of 64 variables arranged in two main datasets is built for 
the higher level of the hierarchy: 20 variables for group description and 44 variables for strategic 
zone description (2 description variables  x  11 strategic zones  x  2 players). The river is 
excluded of the representation because it is inaccessible to units. 

In addition, high-level maneuvers are associated with key locations on the map to compose an 
abstracted action space of 49 strategic actions (4 high-level maneuvers x 12 key locations + Wait 
order). 

5.2.3 Generalization of Value Functions 
The state and action spaces obtained through our abstraction algorithm seem more accessible to 
state-of-the-art RL techniques, though the number of possible states is still large. In order to 
generalize between similar situations, we tested both a 3-layer artificial neural network setup 
trained by the error back-propagation algorithm, and a CMAC setup with unsafe hashing 
(collisions are ignored). 

For the 3-layer artificial neural network setup, we use two fully-connected cascade feed-
forward architectures with 80-hidden neurons: 

• An unique neural network composed of m inputs v1,v2,…,vm corresponding to the variables 
of the state representation s=(v1,v2,…,vm) and n outputs Q(s,a1),Q(s,a2),…,Q(s,an) 
corresponding to the cumulative rewards associated with the action space A={a1,a2,…,an} 
(see Figure 17a); 

• A specific neural network for each action ai of the action space A={a1,a2,…,an}, composed 
of m inputs v1,v2,…,vm corresponding to the variables of the state representation 
s=(v1,v2,…,vm) and 1 output Q(s,ai) corresponding to the cumulative reward associated with 
the action ai (see Figure 17b). 

 
 
 
 
 
 
 
 
  
 
 
 
 
 
                                     (a)                                                                  (b) 

Figure 17. Architectures for the 3-layer artificial neural network setup: (a) a unique neural 
network for all actions; (b) a specific neural network for each action. 
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They are tuned according to (LeCun et al., 1998). The hidden layer propagates values by a 
hyperbolic tangent function and uses a learning rate outoutputhidden αα = , where out is the number of 
neurons of the output layer. The output layer propagates values by an ordinary linear function. 
Connection weights are initialized random uniform to [ cc +− ... ], where c is the number of 
connections feeding into the node. 

For the CMAC setup, we use a specific CMAC for each action ai of the action space 
A={a1,a2,…,an}, composed of m inputs v1,v2,…,vm corresponding to the variables of the state 
representation s=(v1,v2,…,vm) and 1 output Q(s,ai) corresponding to the cumulative reward 
associated with the action ai (see Figure 18). They are tuned according to (Santamaria, Sutton & 
Ram, 1998). Each CMAC contains 32 overlapping tilings in which the variables v1,v2,…,vm are 
partitioned into 20 simple tiles. 

 

 

Figure 18. Architectures for the CMAC setup: a specific CMAC for each action. 

 
For all architectures, variables are normalized and centered to [–0,1…+0,1]. Cumulative 

rewards of selected actions are updated incrementally at each game turn t by the gradient descent 
Sarsa(λ ) algorithm (Sutton & Barto, 1998): 
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 is the weight vector for our function approximator architecture, α  is the learning rate 
and er  the eligibility trace: 

),(1 tttt asQee
tθ

λ r
rr

∇+= −  

with 00

rr
=e . 

 
Sarsa(λ ) is tuned so as to use a learning rate α =0.05 decaying by 10% at every evaluation. 

The effect of varying the decay rate λ  for the eligibility trace is not yet clear, so here we only use 
λ =0.7 which was the best configuration in past experiments. The action selection is carried out 
by using the ε -greedy strategy (Kaelbling, Littman & Moore, 1996) with a constant exploration 
rate ε =0.01 which appears sufficiently exploratory without significantly affecting final 
performance. 
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5.2.4 Learning Scenario 
The learning scenario is configured according to the STRADA bootstrap mechanism. This 
mechanism generates valuable experience and leaves only a small part of the hierarchical 
decision-making to be learned at any given time. So, we configure on one hand, our learning 
system (called learning AI) to control only the decision-making at the higher level of the French 
army, giving strategic orders to its subordinate level (3 leaders are present in the higher level of 
the game scenarios used here). On the other hand, we use the decision-making system included in 
Battleground™ (called bootstrap AI) to control the Russian army and the lower level of the French 
army by following the orders flowing down from the level controlled by the learning AI (see 
Figure 19). 
 
 

 
 
 
 
 
 
 
 
 
 

Figure 19. Decision-making scheme for the side of the learning agents. 

 
We also investigate the situation where roles are reversed, learning a Russian strategy against 

the French. This is relevant as the battle is not symmetrical, since the French army is attacking 
and the Russian one is defending. Moreover, four hypotheses are tested for our learning agents: 

• Can some form of limited communications between leaders of the same hierarchical level 
improve performance? In the RL framework, increased communications means a more 
complex state space. So we study this trade-off here, by including in the state description 
the orders given to same-level leaders in the previous game turn. For this purpose, we need 
to take into account three variables which describe an order (a high-level maneuver 
combined with a key location – axis x and y) for each partner of the same level. 
Considering both scenarios are composed of three army corps, we add two orders (6 
variables) to the state representation of each leader. This generates a state representation of 
38 (32 + 6) variables for the Death in the Flèches scenario and of 70 (64 + 6) variables for 
The Shevardino Redoubt scenario; 

• How best can each leader be rewarded for its order? Two simple options follow: on one 
hand, a global reward function for which each leader is rewarded based on the game points 
scored in the current turn by his entire army (the score results from gaining control of 
objectives and from the losses inflicted and received); on the other hand, a local reward 
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function where a leader is rewarded for the score points that only the units it controls 
obtained (taking in account objectives conquered by the group, as well as group and 
opponent losses). The reward signal r is computed at the end of each turn t as the change in 
the game score between previous and current game turns: 

ttt scorescorer −= ++ 11 , 

where scoret+1 and scoret are computed by: 

∑
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• Can self-play approach work as well as when using an existing opponent to play against in 
order to learn a behavioral strategy to the high level of the hierarchy? This could be another 
direction to take in order to facilitate the conception of a strategic decision-making system 
for modern strategy games because one needs just a tactical decision-making system to 
control the lower level of all sides; 

• Can some form of dynamic exclusion of key locations in the action selection process 
improve performance? For instance, when there are no units in a zone, is it relevant to 
select maneuvers towards key locations placed in this zone? So, we apply two simple 
conditions to restrict the action selection process here: (1) a leader only can give attacking 
orders towards key locations that are not dominated by allied units; and (2) a leader only 
can give defending orders towards key locations that are not dominated by enemy units. 

 
We compare the performance of several setups of our learning agents with the ones obtained 

by a random agent, the bootstrap AI itself and a human player (the author of this thesis). All 
setups (the human player included) are evaluated using the same configuration: they control the 
decision-making of the leaders of the higher level of hierarchy. They play always against the 
same opponent: the commercial decision-making system (the bootstrap AI), except for the self-
play setup of the learning agents. They use all the tactical decision-making system of the 
bootstrap AI to control their subordinates. 

The performances of the random agent, the bootstrap AI and the human player are evaluated 
on a unique set of 50 games (or episodes). The learning agents are trained for 10000 learning 
episodes by alternating learning and evaluation phases of 250 and 50 episodes respectively. 
During the evaluation phases, both learning and exploration are disabled. 

6 Experiments with Battleground™ 
In this section, we present experiments using our approach applied to Battleground™ to evaluate 
the performances of the whole system. In order to carry out the experiments, we use the Death in 

0
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the Flèches and The Shevardino Redoubt scenarios and learn behavioral strategies for French and 
Russian armies. Although we have tested all function approximator setups presented in the 
Section 5.2.3, we only show here the results achieved with a 3-layer artificial neural network 
architecture: an unique network for all actions. 

6.1 Death in the Flèches Scenario 

6.1.1 Learning Strategies for the French Army (Attacker) 
In this first experiment, our agents learn a behavioral strategy for the French army. Their goal is 
to maximize the score. Figure 20 shows the performances of seven setups for the learning agents: 

• Four setups with and without communication combined with global and local rewards. The 
learning agents have as opponent the bootstrap AI; 

• Two setups without communication combined with global and local rewards. The learning 
agents have as opponents other learning agents (self-play); 

• A setup without communication combined with global rewards. Dynamic exclusion of key 
locations is applied in the action selection process. The learning agents have as opponents 
the bootstrap AI. 

 

Figure 20. Results for the French army comparing learning agents with and without 
communication, with local and global reward, playing against the bootstrap AI opponent and by 

self-play, and baselines (random, bootstrap AI, human). 

 
The performances are compared with that of the bootstrap AI, of the random agent and of the 

human player. In the learning curves provided, each point corresponds to one evaluation phase 
whose value is the average score over the 50 corresponding episodes. We observe the following 
results: 

Evaluation Results of Learning Agents (French army on the attack)
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• Several setups achieve the same performances as the bootstrap AI in only a few thousands 
of episodes. They correspond to the ones using a global reward. The strategy learned with 
these setups consists in undertaking a frontal attack and circumvent the territory dominated 
by the opponent through the edges of the forest in order to capture the most important 
objective (see Figure 21); 

• Communication of orders between agents has little impact on the convergence point, but 
seems to help to get a smoother progression of performances; 

• A self-play setup also converges towards the level of the bootstrap AI, although it takes 
more time to do it; 

• Performances increase a lot when key locations are excluded dynamically in the action 
selection. This setup manages in some evaluations to approach closely the performances of 
the human player; 

• Local rewards do not lead to good results in these experiments. They lead to an average 
performance (somewhere between random and bootstrap AI) if no communication was 
present and very poor one if there is communication. The strategy learned by this setup 
shows that the agents do not cooperate in the execution of their tasks. The 3rd corps prefers 
to beat a retreat instead of helping the 1st corps in the combat against Russians since it 
undergoes heavy losses and never conquer scenario objectives. Consequently, the 1st corps 
alone becomes hopeless against the strength and the privileged location of the Russian 
army. 

 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 21. General outline of the behavioral strategy learned for the French army in the Death in 

the Flèches scenario. 

 
These results are very interesting and significant because they show us that a global reward is 

the key to the attack winning when controlling the high level of the hierarchy. This makes some 
sense in the context of a 19th century military offensive which generally entailed at some point 
sacrificing numbers of soldiers in headlong charges. The other ones could eventually overcome 
the defenders, a behavior which would be naturally discouraged by a local (selfish) reward. 
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6.1.2 Learning Strategies for the Russian Army (Defender) 
In this second experiment, we reverse the roles by asking our agents to learn a strategy for the 
Russian army. The goal for the Russian side is to minimize the game score. Hence, the lowest 
curve is the best one. Figure 22 shows the performances of six setups for the learning agents: 

• Four setups with and without communication combined with global and local rewards. The 
learning agents have as opponent the bootstrap AI; 

• Two setups without communication combined with global and local rewards. The learning 
agents have as opponents other learning agents (self-play). 

 

Figure 22. Results for the Russian army comparing learning agents with and without 
communication, with local and global reward, playing against the bootstrap AI opponent and by 

self-play, and baselines (random, bootstrap AI, human). Lowest score is best here. 

 
We observe the following results: 
• All setups obtain interesting performances (at least the same level of the bootstrap AI and 

the human player) with more stable curves than the attacker side, except when applying the 
self-play approach combined with global rewards. Indeed because defending strategies 
seem simpler as a result of the relatively low mobility of the simulated armies; 

• Communication of orders between agents increases performances significantly, help also 
them to get a smoother progression. Setups based on communication achieve excellent 
results, outperforming by far the bootstrap AI and the human player; 

• Contrarily of the attacker side, the self-play setups do not achieve here the same 
performances of the learning agent when playing against the bootstrap AI; 

• A key difference here is that local rewards are not penalizing. This seems to indicate that it 
is not as harmful to the army if agents follow a selfish strategy while on a defensive 
position. 

Evaluation Results of Learning Agents (Russian army on the defense)
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6.2 The Shevardino Redoubt Scenario 

6.2.1 Learning Strategies for the French Army (Attacker) 
In this third experiment, our agents learn a behavioral strategy for the French army placed on The 
Shevardino Redoubt scenario. Their goal is to maximize the score. Figure 23 shows the 
performances of five setups for the learning agents: 

• Four setups with and without communication combined with global and local rewards. The 
learning agents have as opponent the bootstrap AI; 

• A setup without communication combined with global rewards. Dynamic exclusion of key 
locations is applied in the action selection process. The learning agents have as opponents 
the bootstrap AI. 

 

Figure 23. Results for the French army comparing learning agents with and without 
communication, with local and global reward, and baselines (random, bootstrap AI, human). 

 
We observe the following results: 

• Several setups largely exceeded the very poor performances of the bootstrap AI. They 
correspond to the ones communicating orders between agents or excluding dynamically key 
locations. These results are very encouraging because The Shevardino Redoubt scenario 
requires, a priori, a more refined strategy than Death in the Flèches; 

• Communication of orders between agents has a positive impact on the convergence point; 

• Once again, performances increase a lot when key locations are excluded dynamically in the 
action selection. This setup surpasses the performances of the human player on several 
evaluations. Its strategy consists in threatening the enemy by encompassing him on his 
flanks, leaving him with only alternative of attacking or abandoning his elevated position 
without fighting (see Figure 24). The Shevardino Redoubt scenario comprises a map made 
up of several hills, forests and a river. It is well known that hills, forests, and rivers are 
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difficult obstacles to the march of an army. Among hills, a great number of locations are 
found to be very strong in themselves, and dangerous to attack. In hill combat, the attacker 
has always the disadvantage. This poses a particular problem in this scenario because the 
most important objective is placed at the top of a hill completely dominated by the Russian 
army at the beginning of the game. So, the key initiative is to threat the opponent without 
engaging a frontal attack. This corresponds precisely to the strategy that our system has 
learned. 

• The setup without communication combined with global rewards obtained interesting 
performances on the first three thousands episodes. However, it abruptly changed its 
strategy and declined to very poor performances. This is derived from a strategy which 
consists in massively attacking the opponent, causing enormous losses and an absolute 
defeat. This strategy is equivalent to that adopted by the bootstrap AI. Curiously, this setup 
when combined with dynamically exclusion of key locations is the best one in our 
experiments; 

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 24. General outline of the behavioral strategy learned for the French army in The 
Shevardino Redoubt scenario. 

 

6.2.2 Learning Strategies for the Russian Army (Defender) 
In this fourth experiment, we reverse once again the roles by asking our agents to learn a strategy 
for the Russian army. Their goal is then to minimize the game score. Figure 25 shows the 
performances of four setups for the learning agents: with and without communication combined 
with global and local rewards. The learning agents have as opponent the bootstrap AI. 
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Figure 25. Results for the Russian army comparing learning agents with and without 
communication, with local and global reward, and baselines (random, bootstrap AI, human). 

Lowest score is best here. 

 
We observe the following results: 

• In contrast with the attacker agents, the best performances of the defenders are those 
obtained without communication. They achieve performances very similar to the bootstrap 
AI and the human player. Since strategic decision-making for the attacker side is more 
difficult than for the defender side in this scenario, the fact that the defensive agents 
obtained similar performances the bootstrap AI is a very good result. Indeed, the defender 
side is placed on a privileged location and movement becomes hard in the second half of 
the game because it takes place after dark. This is why the strategy adopted by the bootstrap 
AI and by the learning agents is very successful. It consists in keeping the privileged 
location at the top of the hill; 

• Unexpectedly, the setup with communication and global reward obtains very poor 
performances in this experiment. This setup had achieved until now the best performances 
in all other experiments. Its strategy consists in moving units back, going out from the 
privileged location at the top of the hill in order to escape of the French army attacks. So, 
French units conquer easily the most important scenario objective, causing a very bad score 
for Russians; 

6.3 Conclusion 
We evaluated the STRADA approach with Battleground™ by using a historical military hierarchy 
of command and control. The goal was to learn a high level behavioral strategy for the French 
(attacker) and Russian (defender) armies. 

We studied several setups for the learning agents by combining coordination and rewarding 
strategies in the framework of the Death in the Flèches and The Shevardino Redoubt scenarios. 
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Moreover, we tested the self-play approach to simultaneously learn a behavioral strategy for 
attacker and defender. 

The results obtained are very confident since our decision-making system largely exceeded, 
in both scenarios, the performances of the existing Battleground™ AI. In this context, only a few 
thousands of learning episodes were needed to achieve these results. This confirms the 
effectiveness of our approach, the coherence of the state and action representations designed, and 
validate in practice that it is possible to improve the performances of a system by learning only a 
part of a global strategy. 

7 Conclusion and Future Work 

7.1 Summary and contributions 
Modern strategy games present a very complex and original problem little investigated until now. 
Designing efficient decision-making systems for this type of games raises difficult questions to 
the AI community and interests directly the game industry. 

In this thesis, we proposed a novel integrated learning approach to the automatic design of 
adaptive behavioral strategies for modern strategy games. Our approach, called STRADA, is an 
alternative to techniques generally employed by the industry. It combines state-of-the-art 
techniques from several areas of machine learning with new ideas to deal with the complexity of 
these games. In particular, it investigates two main issues: (1) complexity reduction of the 
problem by decomposing the decision-making and abstracting state and action spaces; and (2) 
acceleration of the process of learning from interaction by generalizing the value function and 
bootstrapping the acquisition of experience. 

The decision-making based on a hierarchical organization of agents seems natural in modern 
strategy games. This organization allows simultaneously to: (1) guide the abstraction of state and 
action spaces to design relevant representations to each type of agent, (2) limit the 
communication between agents, (3) organize value functions, and (4) produce a mechanism of 
learning by stages. 

The design of state and action representations is a crucial stage for the use of learning 
techniques. For this purpose, we designed a terrain analysis algorithm which exploits the essential 
properties of a geographical map. This algorithm reduces the huge size of state and action spaces 
of modern strategy games to much more reasonable sizes. It is a significant accomplishment 
because most applications applying reinforcement learning have generally used carefully hand-
crafted domain features. The generated representations are applied to function approximators in 
order to generalize the value function and, consequently, the behavioral strategy learned by our 
system. 

Moreover, we accelerated the process of learning from interaction by setting up a particular 
mechanism for the acquisition of experience. This mechanism leads the learning agents to learn 
progressively a behavioral strategy by treating only a part of the hierarchical structure in each 
step. For this purpose, an existing tactical decision-making system is employed as support. 

We evaluated the approach on the task of learning valuable behavioral strategies for a 
commercial wargame, Battleground™. The results obtained are very significant since they 
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outperformed by far the existing commercial script-based solution, despite the limitation resulting 
from controlling only the high level of the hierarchy. 

7.2 Future Work 

7.2.1 Abstraction 
STRADA actually requires variables that must be used as a summary of the state of the groups of 
units. Although we gave directions in order to find relevant variables here and obtained good 
results with them, ideally they would be found automatically in order to fully automate our 
abstraction procedure. For this purpose, we mention some work which can guide this automation 
(Giunchiglia & Walsh, 1992; Blum & Langlay, 1997; Saitta & Zucker, 2001; Jong & Stone, 
2005; Li, Walsh & Littman, 2006). 

Moreover, high-level behaviors used to abstract elementary tasks must be also provided to 
STRADA. Some examples such as monitoring, exploration and occupation of the terrain were 
mentioned and are natural here. Nevertheless, we believe that by exploring static and dynamic 
terrain information, the design of these behaviors can be considerably helped and eventually 
automated. This is why techniques of terrain analysis and qualitative spatial reasoning should 
once again be considered. A brief study in this context was made on premises of this thesis 
(Corruble, Madeira & Ramalho, 2002). A follow-up study would be useful. 

Furthermore, strategies learned with STRADA are specific to a given scenario. This is why 
state representation contains specific information to a given map (static zones generated by our 
terrain analysis algorithm). It would be interesting to try alternatives taking into account dynamic 
zones in order to generate more general representations. This point is certainly another direction 
to be taken in order to bring the strategy learned by our learning agents adaptable to different and 
dynamic maps. Recent work tackled this problem (Guestrin et al., 2003a). However, this was only 
applied to very simple scenarios. 

7.2.2 Learning and coordination between agents 
The bootstrap mechanism proposed by STRADA allows progressive learning. However, the 
experiments we carried out designed strategies for the highest levels of the hierarchy where we 
began to tackle the issues of rewarding and coordination between agents. To control all the levels 
of the strategic decision-making, it becomes crucial to look further into the study of these 
questions which pose an interesting challenge field of research (Claus & Boutilier, 1998; 
Guestrin, Lagoudakis & Parr, 2002; Chalkiadakis & Boutilier, 2003; Pynadath & Tambe, 2002). 

In addition, this bootstrap mechanism can generate overspecialized strategies and the learning 
process might suffer from shortcomings (high-level strategies can be unsuccessful either because 
they are inherently flawed, or because they have not been properly implemented at the lower 
level). Let us note though that this limitation could possibly be overcome by looping the bootstrap 
mechanism, bringing agents to learn by self-play. However, we did not have time to test this idea 
in this thesis. 

Finally, the decision-making of STRADA agents was formalized without taking into account 
the non-Markovian context of multi-agent environment in modern strategy games. The 
environment becomes partially observable as soon as each agent has its own abstracted state 
representation. Moreover, we did not treat here the “fog of war” technique which is generally 
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used in modern strategy games to increase realism by hiding from the players all that is not in the 
field of vision of their units. These problems can open several research directions in the domains 
of games and reinforcement learning. In addition, our case study was a turn-based game which 
seems well adapted to the sequential framework of reinforcement learning. In the future, STRADA 
should also be tested with a real-time strategy game in order to be evaluated in this case and 
eventually adapted if it is needed. 

7.3 Last Word 
We proved in this thesis that it is possible to use reinforcement learning techniques to design 
adaptive behavioral strategies for modern strategy games. In addition to that, we believe the ideas 
and concepts presented here are not specific to games, but they could be also applied to most 
large-scale multi-agent simulations. 

Since very sophisticated real-world environments are simulated by modern video games, we 
have much to learn from the study of them. These environments can be used as a laboratory to 
validate new AI techniques. They allow to ensure that the techniques are well adapted to the real 
world and consequently can open a path to their application to current situations of the real life. 
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