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Abstract

Wargames are an example of complex multiagent
simulations for which, specifying agent behavior
adequately in advance for all potential situations is not
feasible. In this context, we have applied reinforcement
learning as an adaptive approach to design strategies for
these simulations. In this paper, we introduce our
approach and focus on a novel algorithm for generating
representations ~ with  adequate  granularities  for
commanders of a military hierarchy.

1. Introduction

Many complex multiagent simulations such as
wargames, that are the focus of our interest, are
characterized by a stochastic environment, very large state
and action spaces, and a large number of units that have to
act in parallel to achieve a long-term common goal. In this
context, considering all potential situations an agent could
encounter, and specifying agent behavior adequately in
advance, is difficult for classical artificial intelligence (AI)
approaches. Moreover, fixed strategies are dangerous in
wargames, as in most games, since any shortcomings can
soon be exploited by the opponent.

Therefore, we propose using reinforcement learning
(RL) [1] as an adaptive approach to the design of game
strategies for these simulations. However, the high
complexity encountered in wargames presents also
important theoretical and practical challenges to RL state-
of-art techniques and algorithms [1]. The complexity
involved here concerns firstly the amount of time and data
needed to get valuable knowledge on all combinations of
agents states and actions. Hence, some kind of abstraction
of the state and action spaces is essential to limit the
amount of information that is available.

In this paper, we introduce our learning approach and
focus especially on a novel algorithm for generating
adequate representations in order to deal with the
difficulties of applying RL to wargames. We adopt a
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military hierarchical structure of command and control as
a natural organization to facilitate the communication
between commanders. Then, a representation with an
appropriate granularity is required as an abstraction of the
low-level state and action spaces [4].

We have applied our learning approach to the design of
an adaptive Al for a commercial wargame, John Tiller’s
Battleground™ series' (Talonsoft), for which we carried
out experiments and have obtained very interesting results.

In the next section, we discuss the applicability of RL
to wargames, and the generation of accurate
representations for RL. Following this, we introduce our
algorithm for generating representations. Finally, we
present experiments applying our algorithm to a
Battleground™ scenario and discuss ongoing work.

2. Background

In this section, we present some elements of
background on reinforcement learning in wargames, and
military terrain analysis.

2.1. Reinforcement Learning in Wargames

Reinforcement learning is a general approach for
learning sequential decision-making strategies from
interaction with a stochastic and unknown environment,
based on long-term performance criteria [1]. A RL agent
learns a behavior through trial-and-error interactions with
the environment in order to maximize its cumulative
reward over time. In the domain of strategy games,
important RL practical results have already been achieved.
One of the most impressive and well known is that
obtained by the famous TD-Gammon application which

! Battleground™ is a turn-based commercial game that simulates a
confrontation between two armies at historical battlefields. Its scenarios
model units which move on historical maps composed of hexagons.
Terrain features as well as units detailed characteristics are taken into
account to simulate movement and combat.



was able to play Backgammon at strong master level,
equaling the world’s best human players [2]. Although the
high level of complexity found in Backgammon (state
space of approximately 10*° and action space of
approximately 400), it is dwarfed by the one found in the
kind of game we are interested in here.

Taking a centralized perspective, the complexity of
decision-making in wargames grows exponentially with
the number of units (if there are U units, each with 4
possible actions, the resulting branching factor is 4"). In
addition, this decision-making requires the units to take
into account multiple variables (terrain, troops,
equipments, visibility, etc.). For instance, given a simple
scenario of Battleground” in which the friendly army
contains 128 units and the map is composed of 700
hexagons, each unit may move, per turn, to 64 different
locations on average (depending on the unit type and
terrain) and the troops may combat 20 enemy units on
average (depending on the troop type, weapons and
visibility conditions). This would lead to a maneuver
action space in the order of 64'** and a combat action
space in the order of 20'"". The state space of this simple
scenario is even much larger, since one must consider
several parameters for each unit (friendly or enemy).
Moreover, the state representation must include
information concerning the terrain features. This leads to a
state space in the order of 10", Consequently, designing
strategies and determining what effects decisions have
towards the goal of the game is a hard problem [3].

Considering this, we focus on the fact that many
complex systems can be decomposable into local
subsystems, interacting only weakly between themselves
[8]. This allows learning for each subsystem relatively
independently. In wargames, we can easily identify that
using the military hierarchical structure of command and
control is a natural way to decompose the problem. In this
structure, the ability for decision-making is concentrated
in specific commanders at each level of the hierarchy.
Once a commander has received an order, he is free to use
his domain-specific knowledge and available local
information to take his own decisions to satisfy the order.
The main benefit is that it allows high-level commanders
to take strategic decisions to achieve high-level goals,
only considering information at an appropriate level of
detail. Tactical decisions are only taken by lower-level
commanders. In this context, taking appropriate decisions
at strategic and tactical levels is largely dependent on the
availability —of accurate information about the
environment. Accurate information can be obtained as an
abstraction of the low-level representation [4].

2.2. Abstraction and Terrain Analysis

Knowledge about the military domain is needed in
order to generate accurate representations at different

granularities for each level of the hierarchy. In military
operations, spatial (or terrain) information is of crucial
importance to commander decision-making. Terrain
provides important context for analysis of sensed data as
well as for guiding the tasking of data collection features
[7]. This important information can be obtained by
techniques of abstraction known as terrain analysis.

Terrain analysis consists in interpreting natural and
man-made features of a geographic area to determine their
effects on military operations [7]. The analysis must
support both strategic and tactical levels of operation.
Strategic operation is considered to be high-level
decision-making where commanders can obtain a broad
overview of the battlefield. Tactical analysis provides the
commander with a much more detailed view of specific
areas-of-interest on the battlefield.

Qualitative spatial reasoning (QSR) techniques can
help the process of terrain analysis in wargames [5]. The
essence of qualitative reasoning is to make explicit the
essential knowledge, finding ways to represent continuous
properties of the world by discrete systems of symbols [6].
Hence, using appropriate reasoning techniques, one could
make predictions, diagnose and explain the behavior of
physical systems in a qualitative manner without recourse
to an often intractable or perhaps unavailable quantitative
model. By wusing this conceptually meaningful
information, reasoning strategies are able to achieve
results that are more human-like.

3. Generating Representations

In this section, we introduce our algorithm for
generating adequate representations. This algorithm is a
key component of our integrated learning approach. The
approach develops some new ideas and combines them
with state-of-the-art techniques, proposing innovative
solutions for some key issues: (1) decomposition of the
decision-making process by using the natural hierarchical
structure of the domain; (2) abstraction of the state and
action spaces by automatically generating adequate
representations; (3) acquisition of valuable training data
by adopting a particular bootstrap mechanism; and (4)
generalization of the learnt experience by using function
approximators on a problem of very high dimension.

The functional capability of our algorithm (see Figure
1) is a terrain analyzer to support commander decision-
making in Battleground”. It abstracts low-level
information about any scenario of Battleground " to higher
level (or topological) concepts. This abstraction takes
inspiration from QSR techniques in order to find key
tactical locations (villages, crossroads, bridges, top of
hills, etc.) and key strategic zones (forests, rivers, hills,
etc.) on the map. A key location is any position on the
map whose control is likely to give distinct military
advantage to the force that holds it. Such information,



combined with information about possible enemy
characteristics and force structure, provide measures of
ease of movement of forces throughout the terrain.

Our algorithm takes into account some military
features of a given scenario such as terrain topography,
position of the units of each army and objectives affected.
As a result, the map is partitioned into zones, each one
representing different categories of mobility. Mobility is a
key spatial constraint that allows calculating the ability of
a unit to move across a specified terrain type. Then,
description key variables (e.g., unit’s quality, formation,
position, visibility, strength, fatigue, mobility, etc.) that
are considered essential for each specific level of the
hierarchy are seclected, allowing the generation of
adequate state representations for applying RL.

Input:
e A scenario of the game (a map, position of the troops, and objectives)
e Key variables (leader and troop abilities)

Qutput:

e Key locations

e Partition of the map into zones

e A state representation composed of two main groups of information
(variables describing troops and their environment)

Main procedure:

1% Step (Tactical analysis): Determining key locations (hexagons)
e Objectives, villages, forts, top of hills, crossroads, bridges, etc.
2" Step (Tactical analysis): Partitioning the map into zones

e Rivers (as major obstacles) delimitate static zones

e Forests constitute initial zones that can be merged in the final of this step

e A progressive expansion of the key locations is made by adding neighboring
hexagons until a full partitioning of the map into zones has been reached

e Neighboring zones can be merged depending on the hierarchy level

3" Step (Building a representation): Troops and their environment descriptions
are generated based on the results of the tactical analysis and input key variables

Figure 1. Sketch of algorithm for generating representations

The main procedure is composed of three steps. In the
first one, a tactical analysis evaluates features of the
terrain in order to determine key locations on the map that
are also used as an abstraction of the action space. Each
one of the key locations corresponds to a node of a graph
which is associated to an identifier, a type, a coordinate on
the map, and a list of identifiers of other connected nodes.

In the second step, firstly the terrain locations of type
forest, orchard, and river are located on the map. Each
hexagon of these types is associated to a preexistent zone
of the same type if there is one adjacent, otherwise a new
zone is created. Secondly, the key locations identified
previously are used as seeds to be expanded progressively
by adding neighboring hexagons until a full partitioning of
the map into zones has been reached. The rate of
expansion (number of hexagons absorbed by the zones) at
each iteration is directly linked to the mobility rate of
maneuver for each type of terrain. The hexagons of a
given zone try to agglomerate their neighbors that do not
yet belong to any zone. Each one of these free hexagons

has a token for each existing zone. The tokens are
calculated according to many geographical features
(terrain types, elevation, etc. found between a hexagon of
a zone and a free hexagon). The higher the token of a free
hexagon is to a zone, the more quickly the hexagon is
aggregated. The expansion of each zone normally finishes
when encountering another zone or a border of the map.
The main loop stops when no free hexagon remains.

In the last step, a state representation is built based on
the results of the two first steps, by a projection onto a list
of key variables. The structure of this final representation
contains two main groups of data: (1) a relatively detailed
description of the group of units for which an order is
under consideration (commanders at all levels of the
hierarchy see these low-level units organized in groups).
The characteristics of each group are a summary of the
characteristics of individual units; (2) a summarized
description of their environment (in terms mainly of the
repartition of friendly and enemy forces across all zones).

4. Experiments

In this section, we present experiments using our
approach applied to Battleground . In order to carry them
out, we chose the game scenario introduced in the section
2.1 which represents different phases of the battle of
Borodino between French and Russian armies near
Moscow in 1812.

Considering the fact that the military hierarchical
organization is useful for allowing abstraction of the
complex state and action spaces in this game, it also opens
itself to a mechanism of learning by levels of the hierarchy
(in an incremental manner). Following this idea, we
configured our system to learn the decision-making of
each level of the hierarchy independently. In this context,
we use as opponent to our “learning AI” another Al
system (the commercial Al included in Battleground )
developed by wargame experts to perform this
incremental learning mechanism.

In the following, we present the application of our
algorithm to the higher level of the hierarchy. In this
context, the learning process is carried out as follows: the
commercial agents (a) control totally the Russian army,
and (b) follow orders flowing down the hierarchy from the
subordinate commanders for the French army. As a result,
our system (the learning agents) controls only the
decision-making at the level of the French army
commander giving strategic orders to the subordinate
level, composed of 3 subordinate commanders. In these
experiments, the learning agents learn strategies for the 3
subordinate commanders, coordinating them implicitly.

As a result of the application of the algorithm, 8 key
locations and 6 zones were obtained on the game map,
and a state representation composed of 32 continuous
variables was built (see Figure 2).



A Corps description (8 variables)

e Position (X, y) of the troop on the map (2 variables)
e Attillery, cavalry, and infantry strength levels (3 variables)
e Fatigue level, quality rating, and movement allowance (3 variables)

An Environment description (24 variables)

o Strength and fatigue levels of friendly and enemy units in each zone

Figure 2. Abstraction of the state and action spaces. It shows
8 key locations and 6 zones on the map, and a state
representation composed of 32 variables

After abstraction, the combination of strategic order
types and key locations leads to an action space of 33
possible actions for each of the three subordinate
commanders, reducing from 2801° to 33’ the complexity
of the army commander decision-making. Moreover, the
abstracted state representation reduced the original state
space of the scenario approximately from the order of
10" at all levels to the order of 10* at the higher level.

Our learning agents implement the gradient-descent
Sarsa(\) algorithm [1] combined with a multilayer
artificial neural network trained by backpropagating
temporal-difference errors. We compared them with other
architectures (random agents, the commercial agents and
an average human player), and evaluated all architectures
by playing against the commercial agents (Russian army).
All architectures used the same configuration as the
learning agents, i.e., controlling only the decision-making
level of the army commander. The results indicate that our
system has made interesting progress in only 6000
learning episodes with an important improvement in
average score (see Figure 3). The results place our agents
close to the average score of the human player.
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Figure 3. Progress evaluation of the RL agents in a total of
6000 episodes of learning (50 evaluations every 250 episodes)

5. Conclusion and Future Work

We have applied the RL approach on a very complex
and original problem. In this paper, we introduced a novel
algorithm for generating representations in order to deal
with the applicability of RL to complex multiagent
simulations such as wargames. The algorithm constructs
adequate representations for aiding commanders of a
military hierarchical structure, hence leading to tractable,
though still large, state and action spaces.

The core of our algorithm takes some inspiration from
QSR techniques, aiming for expressive spatial
representations through a deep terrain analysis. These
techniques exploit particular properties of terrain, being
able to describe its essential configurations and features
for allowing to construct more human-like representations.
In this context, our system is able to learn a game strategy
that can better use terrain in order to reach its goals.

We evaluated the algorithm on Battleground” and
obtained very satisfactory results since it outperformed by
far the commercial agents and achieved the level of
performance of a human player in a reasonable time.
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